Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 92(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29593043

RESUMEN

Several Old World and New World arenaviruses are responsible for severe endemic and epidemic hemorrhagic fevers, whereas other members of the Arenaviridae family are nonpathogenic. To date, no approved vaccines, antivirals, or specific treatments are available, except for Junín virus. However, protection of nonhuman primates against Lassa fever virus (LASV) is possible through the inoculation of the closely related but nonpathogenic Mopeia virus (MOPV) before challenge with LASV. We reasoned that this virus, modified by using reverse genetics, would represent the basis for the generation of a vaccine platform against LASV and other pathogenic arenaviruses. After showing evidence of exoribonuclease (ExoN) activity in NP of MOPV, we found that this activity was essential for multiplication in antigen-presenting cells. The introduction of multiple mutations in the ExoN site of MOPV NP generated a hyperattenuated strain (MOPVExoN6b) that is (i) genetically stable over passages, (ii) has increased immunogenic properties compared to those of MOPV, and (iii) still promotes a strong type I interferon (IFN) response. MOPVExoN6b was further modified to harbor the envelope glycoproteins of heterologous pathogenic arenaviruses, such as LASV or Lujo, Machupo, Guanarito, Chapare, or Sabia virus in order to broaden specific antigenicity while preserving the hyperattenuated characteristics of the parental strain. Our MOPV-based vaccine candidate for LASV, MOPEVACLASV, was used in a one-shot immunization assay in nonhuman primates and fully protected them from a lethal challenge with LASV. Thus, our hyperattenuated strain of MOPV constitutes a promising new live-attenuated vaccine platform to immunize against several, if not all, pathogenic arenaviruses.IMPORTANCE Arenaviruses are emerging pathogens transmitted to humans by rodents and responsible for endemic and epidemic hemorrhagic fevers of global concern. Nonspecific symptoms associated with the onset of infection make these viruses difficult to distinguish from other endemic pathogens. Moreover, the unavailability of rapid diagnosis in the field delays the identification of the virus and early care for treatment and favors spreading. The vaccination of exposed populations would be of great help to decrease morbidity and human-to-human transmission. Using reverse genetics, we generated a vaccine platform for pathogenic arenaviruses based on a modified and hyperattenuated strain of the nonpathogenic Mopeia virus and showed that the Lassa virus candidate fully protected nonhuman primates from a lethal challenge. These results showed that a rationally designed recombinant MOPV-based vaccine is safe, immunogenic, and efficacious in nonhuman primates.


Asunto(s)
Arenaviridae/inmunología , Fiebres Hemorrágicas Virales/inmunología , Fiebre de Lassa/inmunología , Virus Lassa/inmunología , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/prevención & control , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología , Animales , Arenaviridae/genética , Línea Celular , Chlorocebus aethiops , Cricetinae , Exorribonucleasas/metabolismo , Células HEK293 , Fiebres Hemorrágicas Virales/patología , Fiebres Hemorrágicas Virales/transmisión , Fiebres Hemorrágicas Virales/virología , Humanos , Interferón Tipo I/inmunología , Fiebre de Lassa/prevención & control , Fiebre de Lassa/virología , Macaca fascicularis , Enfermedades de los Monos/virología , Vacunación , Células Vero
2.
PLoS Med ; 15(3): e1002535, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29584730

RESUMEN

BACKGROUND: Despite repeated outbreaks, in particular the devastating 2014-2016 epidemic, there is no effective treatment validated for patients with Ebola virus disease (EVD). Among the drug candidates is the broad-spectrum polymerase inhibitor favipiravir, which showed a good tolerance profile in patients with EVD (JIKI trial) but did not demonstrate a strong antiviral efficacy. In order to gain new insights into the antiviral efficacy of favipiravir and improve preparedness and public health management of future outbreaks, we assess the efficacy achieved by ascending doses of favipiravir in Ebola-virus-infected nonhuman primates (NHPs). METHODS AND FINDINGS: A total of 26 animals (Macaca fascicularis) were challenged intramuscularly at day 0 with 1,000 focus-forming units of Ebola virus Gabon 2001 strain and followed for 21 days (study termination). This included 13 animals left untreated and 13 treated with doses of 100, 150, and 180 mg/kg (N = 3, 5, and 5, respectively) favipiravir administered intravenously twice a day for 14 days, starting 2 days before infection. All animals left untreated or treated with 100 mg/kg died within 10 days post-infection, while animals receiving 150 and 180 mg/kg had extended survival (P < 0.001 and 0.001, respectively, compared to untreated animals), leading to a survival rate of 40% (2/5) and 60% (3/5), respectively, at day 21. Favipiravir inhibited viral replication (molecular and infectious viral loads) in a drug-concentration-dependent manner (P values < 0.001), and genomic deep sequencing analyses showed an increase in virus mutagenesis over time. These results allowed us to identify that plasma trough favipiravir concentrations greater than 70-80 µg/ml were associated with reduced viral loads, lower virus infectivity, and extended survival. These levels are higher than those found in the JIKI trial, where patients had median trough drug concentrations equal to 46 and 26 µg/ml at day 2 and day 4 post-treatment, respectively, and suggest that the dosing regimen in the JIKI trial was suboptimal. The environment of a biosafety level 4 laboratory introduces a number of limitations, in particular the difficulty of conducting blind studies and performing detailed pharmacological assessments. Further, the extrapolation of the results to patients with EVD is limited by the fact that the model is fully lethal and that treatment initiation in patients with EVD is most often initiated several days after infection, when symptoms and high levels of viral replication are already present. CONCLUSIONS: Our results suggest that favipiravir may be an effective antiviral drug against Ebola virus that relies on RNA chain termination and possibly error catastrophe. These results, together with previous data collected on tolerance and pharmacokinetics in both NHPs and humans, support a potential role for high doses of favipiravir for future human interventions.


Asunto(s)
Amidas/farmacología , Amidas/farmacocinética , Antivirales/farmacología , Ebolavirus , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Pirazinas/farmacología , Pirazinas/farmacocinética , Animales , Relación Dosis-Respuesta a Droga , Femenino , Genoma Viral , Humanos , Macaca fascicularis , Mutagénesis , ARN/análisis , Factores de Tiempo , Investigación Biomédica Traslacional , Carga Viral
3.
Nat Microbiol ; 8(1): 64-76, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36604507

RESUMEN

Pathogenic New World arenaviruses (NWAs) cause haemorrhagic fevers and can have high mortality rates, as shown in outbreaks in South America. Neutralizing antibodies (Abs) are critical for protection from NWAs. Having shown that the MOPEVAC vaccine, based on a hyperattenuated arenavirus, induces neutralizing Abs against Lassa fever, we hypothesized that expression of NWA glycoproteins in this platform might protect against NWAs. Cynomolgus monkeys immunized with MOPEVACMAC, targeting Machupo virus, prevented the lethality of this virus and induced partially NWA cross-reactive neutralizing Abs. We then developed the pentavalent MOPEVACNEW vaccine, expressing glycoproteins from all pathogenic South American NWAs. Immunization of cynomolgus monkeys with MOPEVACNEW induced neutralizing Abs against five NWAs, strong innate followed by adaptive immune responses as detected by transcriptomics and provided sterile protection against Machupo virus and the genetically distant Guanarito virus. MOPEVACNEW may thus be efficient to protect against existing and potentially emerging NWAs.


Asunto(s)
Arenavirus del Nuevo Mundo , Animales , Arenavirus del Nuevo Mundo/metabolismo , Vacunas Combinadas , Macaca fascicularis/metabolismo , Anticuerpos Neutralizantes , Glicoproteínas
4.
Nat Commun ; 14(1): 1352, 2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906645

RESUMEN

Lassa fever hits West African countries annually in the absence of licensed vaccine to limit the burden of this viral hemorrhagic fever. We previously developed MeV-NP, a single-shot vaccine protecting cynomolgus monkeys against divergent strains one month or more than a year before Lassa virus infection. Given the limited dissemination area during outbreaks and the risk of nosocomial transmission, a vaccine inducing rapid protection could be useful to protect exposed people during outbreaks in the absence of preventive vaccination. Here, we test whether the time to protection can be reduced after immunization by challenging measles virus pre-immune male cynomolgus monkeys sixteen or eight days after a single shot of MeV-NP. None of the immunized monkeys develop disease and they rapidly control viral replication. Animals immunized eight days before the challenge are the best controllers, producing a strong CD8 T-cell response against the viral glycoprotein. A group of animals was also vaccinated one hour after the challenge, but was not protected and succumbed to the disease as the control animals. This study demonstrates that MeV-NP can induce a rapid protective immune response against Lassa fever in the presence of MeV pre-existing immunity but can likely not be used as therapeutic vaccine.


Asunto(s)
Fiebre de Lassa , Fiebre de Lassa/inmunología , Fiebre de Lassa/prevención & control , Virus Lassa/inmunología , Masculino , Animales , Macaca fascicularis , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Nucleoproteínas/inmunología , Inmunidad Humoral , Replicación Viral , Linfocitos T/inmunología , Células Asesinas Naturales/inmunología , Transcriptoma
5.
J Infect Dis ; 204 Suppl 3: S1011-20, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21987737

RESUMEN

In sharp contrast to human and nonhuman primates, guinea pigs and some other mammals resist Ebola virus (EBOV) replication and do not develop illness upon virus inoculation. However, serial passaging of EBOV in guinea pigs results in a selection of variants with high pathogenicity. In this report, using a reverse genetics approach, we demonstrate that this dramatic increase in EBOV pathogenicity is associated with amino acid substitutions in the structural protein VP24. We show that although replication of recombinant EBOV carrying wild-type VP24 is impaired in primary peritoneal guinea pig macrophages and in the liver of infected animals, the substitutions in VP24 allow EBOV to replicate in guinea pig macrophages and spread in the liver of infected animals. Furthermore, we demonstrate that both VP24/wild type and the guinea pig-adapted VP24/8mc are similar in their ability to block expression of interferon-induced host genes, suggesting that the increase in EBOV virulence for guinea pigs is not associated with VP24 interferon antagonist function. This study sheds light on the mechanism of resistance to EBOV infection and highlights the critical role of VP24 in EBOV pathogenesis.


Asunto(s)
Ebolavirus/metabolismo , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/virología , Proteínas Virales/metabolismo , Animales , Línea Celular , Ebolavirus/clasificación , Ebolavirus/genética , Femenino , Regulación Viral de la Expresión Génica/fisiología , Cobayas , Humanos , Hígado/ultraestructura , Macrófagos/virología , Mutación , Virulencia , Replicación Viral
6.
J Infect Dis ; 204 Suppl 3: S892-6, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21987766

RESUMEN

The structural protein VP24 of Ebola virus (EBOV) is a determinant of virulence in rodent models and possesses an interferon antagonist function. In this study, we investigate the role of VP24 in EBOV replication using RNA interference by small interfering RNA to knock down the expression of this protein in virus-infected cells. We reveal that VP24 is required for assembly of viral nucleocapsids and that silencing of VP24 expression prevents the release of EBOV.


Asunto(s)
Ebolavirus/fisiología , Silenciador del Gen , Nucleocápside/fisiología , Proteínas Virales/metabolismo , Ensamble de Virus/fisiología , Replicación Viral/genética , Animales , Chlorocebus aethiops , Ebolavirus/genética , Regulación Viral de la Expresión Génica , Ratones , Conejos , Proteínas Recombinantes , Células Vero , Proteínas Virales/genética , Replicación Viral/fisiología
7.
Vaccines (Basel) ; 10(6)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35746571

RESUMEN

Sudan ebolavirus (SUDV) is one of four members of the Ebolavirus genus known to cause Ebola Virus Disease (EVD) in humans, which is characterized by hemorrhagic fever and a high case fatality rate. While licensed therapeutics and vaccines are available in limited number to treat infections of Zaire ebolavirus, there are currently no effective licensed vaccines or therapeutics for SUDV. A well-characterized animal model of this disease is needed for the further development and testing of vaccines and therapeutics. In this study, twelve cynomolgus macaques (Macaca fascicularis) were challenged intramuscularly with 1000 PFUs of SUDV and were followed under continuous telemetric surveillance. Clinical observations, body weights, temperature, viremia, hematology, clinical chemistry, and coagulation were analyzed at timepoints throughout the study. Death from SUDV disease occurred between five and ten days after challenge at the point that each animal met the criteria for euthanasia. All animals were observed to exhibit clinical signs and lesions similar to those observed in human cases which included: viremia, fever, dehydration, reduced physical activity, macular skin rash, systemic inflammation, coagulopathy, lymphoid depletion, renal tubular necrosis, hepatocellular degeneration and necrosis. The results from this study will facilitate the future preclinical development and evaluation of vaccines and therapeutics for SUDV.

8.
Virulence ; 13(1): 654-669, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35437094

RESUMEN

The area of Lassa virus (LASV) circulation is expanding, with the emergence of highly pathogenic new LASV lineages. Benin recently became an endemic country for LASV and has seen the emergence of a new LASV lineage (VII). The first two outbreaks in 2014 and 2016 showed a relatively high mortality rate compared to other outbreaks. We infected cynomolgus monkeys with two strains belonging to lineage II and lineage VII that were isolated from deceased patients during the 2016 outbreak in Benin. The lineage VII strain (L7) caused uniform mortality. Death was associated with uncontrolled viral replication, unbalanced inflammatory responses characterized by increased concentrations of pro- and anti-inflammatory mediators, and the absence of efficient immune responses, resembling the pathogenesis associated with the prototypic Josiah strain in monkeys. The lineage II strain (L2) showed apparently lower virulence than its counterpart, with a prolonged time to death and a lower mortality rate. Prolonged survival was associated with better control of viral replication, a moderate inflammatory response, and efficient T-cell responses. Transcriptomic analyses also highlighted important differences in the immune responses associated with the outcome. Both strains caused strong inflammation in several organs. Notably, meningitis and encephalitis were observed in the cerebral cortex and cerebellum in all monkeys, independently of the outcome. Due to their apparently high pathogenicity, emerging strains from lineage VII should be considered in preclinical vaccine testing. Lineage II would also be beneficial in pathogenesis studies to study the entire spectrum of Lassa fever severity.


Asunto(s)
Fiebre de Lassa , Virus Lassa , Animales , Humanos , Virus Lassa/genética , Macaca fascicularis , Replicación Viral
9.
Commun Biol ; 4(1): 1292, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34785771

RESUMEN

Nipah virus (NiV) is a highly pathogenic emerging bat-borne Henipavirus that has caused numerous outbreaks with public health concerns. It is able to inhibit the host innate immune response. Since the NF-κB pathway plays a crucial role in the innate antiviral response as a major transcriptional regulator of inflammation, we postulated its implication in the still poorly understood NiV immunopathogenesis. We report here that NiV inhibits the canonical NF-κB pathway via its nonstructural W protein. Translocation of the W protein into the nucleus causes nuclear accumulation of the cellular scaffold protein 14-3-3 in both African green monkey and human cells infected by NiV. Excess of 14-3-3 in the nucleus was associated with a reduction of NF-κB p65 subunit phosphorylation and of its nuclear accumulation. Importantly, W-S449A substitution impairs the binding of the W protein to 14-3-3 and the subsequent suppression of NF-κB signaling, thus restoring the production of proinflammatory cytokines. Our data suggest that the W protein increases the steady-state level of 14-3-3 in the nucleus and consequently enhances 14-3-3-mediated negative feedback on the NF-κB pathway. These findings provide a mechanistic model of W-mediated disruption of the host inflammatory response, which could contribute to the high severity of NiV infection.


Asunto(s)
Inmunidad Innata/fisiología , Virus Nipah/fisiología , Transducción de Señal/inmunología , Proteínas Virales/metabolismo , Animales , Línea Celular , Núcleo Celular/inmunología , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , FN-kappa B , Virus Nipah/genética
10.
Commun Biol ; 4(1): 27, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33398113

RESUMEN

Lassa virus (LASV) is endemic in West Africa and induces a viral hemorrhagic fever (VHF) with up to 30% lethality among clinical cases. The mechanisms involved in control of Lassa fever or, in contrast, the ensuing catastrophic illness and death are poorly understood. We used the cynomolgus monkey model to reproduce the human disease with asymptomatic to mild or fatal disease. After initial replication at the inoculation site, LASV reached the secondary lymphoid organs. LASV did not spread further in nonfatal disease and was rapidly controlled by balanced innate and T-cell responses. Systemic viral dissemination occurred during severe disease. Massive replication, a cytokine/chemokine storm, defective T-cell responses, and multiorgan failure were observed. Clinical, biological, immunological, and transcriptomic parameters resembled those observed during septic-shock syndrome, suggesting that similar pathogenesis is induced during Lassa fever. The outcome appears to be determined early, as differentially expressed genes in PBMCs were associated with fatal and non-fatal Lassa fever outcome very early after infection. These results provide a full characterization and important insights into Lassa fever pathogenesis and could help to develop early diagnostic tools.


Asunto(s)
Modelos Animales de Enfermedad , Fiebre de Lassa/inmunología , Fiebre de Lassa/virología , Macaca fascicularis , Inmunidad Adaptativa , Animales , Biomarcadores/metabolismo , Femenino , Inmunidad Innata , Fiebre de Lassa/sangre , Fiebre de Lassa/patología , Pulmón/patología , Tejido Linfoide/patología , Masculino , Transcriptoma
11.
Sci Transl Med ; 13(597)2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108251

RESUMEN

A safe and protective Lassa virus vaccine is crucially needed in Western Africa to stem the recurrent outbreaks of Lassa virus infections in Nigeria and the emergence of Lassa virus in previously unaffected countries, such as Benin and Togo. Major challenges in developing a Lassa virus vaccine include the high diversity of circulating strains and their reemergence from 1 year to another. To address each of these challenges, we immunized cynomolgus monkeys with a measles virus vector expressing the Lassa virus glycoprotein and nucleoprotein of the prototypic Lassa virus strain Josiah (MeV-NP). To evaluate vaccine efficacy against heterologous strains of Lassa virus, we challenged the monkeys a month later with heterologous strains from lineage II or lineage VII, finding that the vaccine was protective against these strains. A second cohort of monkeys was challenged 1 year later with the homologous Josiah strain, finding that a single dose of MeV-NP was sufficient to protect all vaccinated monkeys. These studies demonstrate that MeV-NP can generate both long-lasting immune responses and responses that are able to protect against diverse strains of Lassa virus.


Asunto(s)
Fiebre de Lassa , Vacunas Virales/inmunología , África Occidental , Animales , Fiebre de Lassa/prevención & control , Virus Lassa , Macaca fascicularis , Nucleoproteínas
12.
Antiviral Res ; 177: 104758, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32135218

RESUMEN

BACKGROUND: In spite of recurrent and dramatic outbreaks, there are no therapeutics approved against Ebola virus disease. Favipiravir, a RNA polymerase inhibitor active against several RNA viruses, recently demonstrated significant but not complete protection in a non-human primate model of Ebola virus disease. In this study, we assessed the benefit of the combination of favipiravir and ribavirin, another broad spectrum antiviral agent, in the same model. METHODS: 15 female cynomolgus macaques were challenged intramuscularly with 1,000 FFU of Ebola virus Gabon 2001 strain and followed for 21 days. All animals received favipiravir 180 mg/kg twice a day (BID), either as monotherapy (n = 5) or in combination with ribavirin (n = 10). Ribavirin was given either at the dose 10 mg/kg BID (n = 5) or 5 mg/kg BID (n = 5). Favipiravir and ribavirin were initiated two and one days before viral challenge respectively and treatment were continued for 14 days. Treatment effects on viral and hematological markers were assessed using a mathematical model. Survival rate of 0% and 20% were obtained in macaques receiving favipiravir plus ribavirin 10 and 5 mg/kg BID, respectively, compared to 40% in the favipiravir monotherapy group (P = 0.061 when comparing monotherapy and bitherapy, log rank). Viral dynamic modeling analysis did not identify an association between plasma concentrations of ribavirin and viral load levels. Using a model of erythropoiesis, plasma concentrations of ribavirin were strongly associated with a hemoglobin drop (p = 0.0015). CONCLUSION: Ribavirin plus favipiravir did not extend survival rates and did not lower viral replication rate compared to favipiravir monotherapy in this animal model. Patients receiving this combination in other indications, such as Lassa fever, should be closely monitored to prevent potential toxicity associated with anemia.


Asunto(s)
Amidas/uso terapéutico , Antivirales/uso terapéutico , Ebolavirus/efectos de los fármacos , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Pirazinas/uso terapéutico , Ribavirina/uso terapéutico , Animales , Modelos Animales de Enfermedad , Ebolavirus/fisiología , Femenino , Macaca fascicularis , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
13.
Autophagy ; 16(10): 1858-1870, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31905032

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is a virus that causes severe liver dysfunctions and hemorrhagic fever, with high mortality rate. Here, we show that CCHFV infection caused a massive lipidation of LC3 in hepatocytes. This lipidation was not dependent on ATG5, ATG7 or BECN1, and no signs for recruitment of the alternative ATG12-ATG3 pathway for lipidation was found. Both virus replication and protein synthesis were required for the lipidation of LC3. Despite an augmented transcription of SQSTM1, the amount of proteins did not show a massive and sustained increase in infected cells, indicating that degradation of SQSTM1 by macroautophagy/autophagy was still occurring. The genetic alteration of autophagy did not influence the production of CCHFV particles demonstrating that autophagy was not required for CCHFV replication. Thus, the results indicate that CCHFV multiplication imposes an overtly elevated level of LC3 mobilization that involves a possibly novel type of non-canonical lipidation. Abbreviations: BECN1: Beclin 1; CCHF: Crimean-Congo hemorrhagic fever; CCHFV: Crimean-Congo hemorrhagic fever virus; CHX: cycloheximide; ER: endoplasmic reticulum; GFP: green fluorescent protein; GP: glycoproteins; MAP1LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; n.i.: non-infected; NP: nucleoprotein; p.i.: post-infection; SQSTM1: sequestosome 1.


Asunto(s)
Autofagia , Células Epiteliales/virología , Virus de la Fiebre Hemorrágica de Crimea-Congo/metabolismo , Fiebre Hemorrágica de Crimea/virología , Replicación Viral , Animales , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 7 Relacionada con la Autofagia/metabolismo , Beclina-1/metabolismo , Chlorocebus aethiops , Células HeLa , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Fiebre Hemorrágica de Crimea/diagnóstico , Fiebre Hemorrágica de Crimea/metabolismo , Células Hep G2 , Hepatocitos/virología , Humanos , Lípidos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Biosíntesis de Proteínas , Proteína Sequestosoma-1/metabolismo , Células Vero
14.
Sci Transl Med ; 11(512)2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578242

RESUMEN

Lassa fever is a major threat in Western Africa. The large number of people living at risk for this disease calls for the development of a vaccine against Lassa virus (LASV). We generated live-attenuated LASV vaccines based on measles virus and Mopeia virus platforms and expressing different LASV antigens, with the aim to develop a vaccine able to protect after a single shot. We compared the efficacy of these vaccines against LASV in cynomolgus monkeys. The vaccines were well tolerated and protected the animals from LASV infection and disease after a single immunization but with varying efficacy. Analysis of the immune responses showed that complete protection was associated with robust secondary T cell and antibody responses against LASV. Transcriptomic and proteomic analyses showed an early activation of innate immunity and T cell priming after immunization with the most effective vaccines, with changes detectable as early as 2 days after immunization. The most efficacious vaccine candidate, a measles vector simultaneously expressing LASV glycoprotein and nucleoprotein, has been selected for further clinical evaluation.


Asunto(s)
Glicoproteínas/inmunología , Nucleoproteínas/inmunología , Proteínas Virales/inmunología , Animales , Línea Celular , Citometría de Flujo , Humanos , Fiebre de Lassa/inmunología , Fiebre de Lassa/prevención & control , Fiebre de Lassa/virología , Virus Lassa , Macaca fascicularis , Masculino , Proteómica , Transcriptoma , Vacunación/métodos
15.
Nat Commun ; 9(1): 4013, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275474

RESUMEN

Despite several clinical trials implemented, no antiviral drug could demonstrate efficacy against Ebola virus. In non-human primates, early initiation of polymerase inhibitors favipiravir and remdesivir improves survival, but whether they could be effective in patients is unknown. Here we analyze the impact of antiviral therapy by using a mathematical model that integrates virological and immunological data of 44 cynomolgus macaques, left untreated or treated with favipiravir. We estimate that favipiravir has a ~50% efficacy in blocking viral production, which results in reducing virus growth and cytokine storm while IFNα reduces cell susceptibility to infection. Simulating the effect of delayed initiations of treatment, our model predicts survival rates of 60% for favipiravir and 100% for remdesivir when treatment is initiated within 3 and 4 days post infection, respectively. These results improve the understanding of Ebola immuno-pathogenesis and can help optimize antiviral evaluation in future outbreaks.


Asunto(s)
Antivirales/uso terapéutico , Ebolavirus/inmunología , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/inmunología , Interacciones Huésped-Patógeno/inmunología , Amidas/farmacología , Amidas/uso terapéutico , Animales , Antivirales/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ebolavirus/efectos de los fármacos , Femenino , Fiebre Hemorrágica Ebola/virología , Interacciones Huésped-Patógeno/efectos de los fármacos , Interferón-alfa/farmacología , Interferón-alfa/uso terapéutico , Macaca , Modelos Teóricos , Pirazinas/farmacología , Pirazinas/uso terapéutico , Análisis de Supervivencia , Factores de Tiempo , Carga Viral/efectos de los fármacos , Carga Viral/inmunología
16.
Antiviral Res ; 140: 95-105, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28132865

RESUMEN

Ebola virus (EBOV) haemorrhagic fever remains a threat to global public health with an urgent need for an effective treatment. In order to achieve these goals, access to non-human primate (NHP) laboratory models is an essential requirement. Here, we present the first NHP-EBOV laboratory model readily available to the European scientific community, based on infection of Mauritian cynomolgus macaques using a Central-African EBOV strain and increasing virus challenge dose (10, 100, or 1000 focus forming units per animal). The outcome of these experiments was assessed using clinical, hematological, and biochemical criteria. All challenge doses resulted in fatal infections within 8-11 days. Symptoms appeared from day 5 after infection onwards and disease progression was slower than in previous reports based on Asian cynomolgus macaques. Thus, our model resembled human disease more closely than previous models (onset of symptoms estimated 2-21 days after infection) extending the period of time available for therapeutic intervention. To establish the dynamics of virus genome variation, the study included the first detailed analysis of major and minor genomic EBOV variants during the course of the disease. Major variants were scarce and the population of minor variants was shaped by selective pressure similar to genomic mutations observed in Nature. This primate model provides a robust baseline for future genomic studies in the context of therapeutic methods for treating Ebola virus-infected patients.


Asunto(s)
Ebolavirus/genética , Fiebre Hemorrágica Ebola/virología , Macaca fascicularis , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ebolavirus/aislamiento & purificación , Ebolavirus/patogenicidad , Genoma Viral , Fiebre Hemorrágica Ebola/terapia , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
17.
Sci Rep ; 7(1): 4099, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28642489

RESUMEN

Despite sporadic outbreaks of Ebola virus (EBOV) over the last 4 decades and the recent public health emergency in West Africa, there are still no approved vaccines or therapeutics for the treatment of acute EBOV disease (EVD). In response to the 2014 outbreak, an ovine immunoglobulin therapy was developed, termed EBOTAb. After promising results in the guinea pig model of EBOV infection, EBOTAb was tested in the cynomolgus macaque non-human primate model of lethal EBOV infection. To ensure stringent therapeutic testing conditions to replicate likely clinical usage, EBOTAb was first delivered 1, 2 or 3 days post-challenge with a lethal dose of EBOV. Results showed a protective effect of EBOTAb given post-exposurally, with survival rates decreasing with increasing time after challenge. Viremia results demonstrated that EBOTAb resulted in a decreased circulation of EBOV in the bloodstream. Additionally, assay of liver enzymes and histology analysis of local tissues identified differences between EBOTAb-treated and untreated groups. The results presented demonstrate that EBOTAb conferred protection against EBOV when given post-exposure and should be explored and developed further as a potential intervention strategy for future outbreaks, which are likely to occur.


Asunto(s)
Anticuerpos Antivirales/farmacología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/inmunología , Inmunoglobulina G/farmacología , Animales , Biomarcadores , Modelos Animales de Enfermedad , Ebolavirus/genética , Fiebre Hemorrágica Ebola/mortalidad , Fiebre Hemorrágica Ebola/virología , Inmunohistoquímica , Estimación de Kaplan-Meier , Hígado/metabolismo , Hígado/patología , Hígado/virología , Macaca fascicularis , Masculino , Profilaxis Posexposición , Primates , ARN Viral , Factores de Tiempo , Resultado del Tratamiento , Carga Viral
18.
PLoS Negl Trop Dis ; 11(2): e0005389, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28231247

RESUMEN

BACKGROUND: In 2014-2015, we assessed favipiravir tolerance and efficacy in patients with Ebola virus (EBOV) disease (EVD) in Guinea (JIKI trial). Because the drug had never been used before for this indication and that high concentrations of the drugs were needed to achieve antiviral efficacy against EBOV, a pharmacokinetic model had been used to propose relevant dosing regimen. Here we report the favipiravir plasma concentrations that were achieved in participants in the JIKI trial and put them in perspective with the model-based targeted concentrations. METHODS AND FINDINGS: Pre-dose drug concentrations were collected at Day-2 and Day-4 of treatment in 66 patients of the JIKI trial and compared to those predicted by the model taking into account patient's individual characteristics. At Day-2, the observed concentrations were slightly lower than the model predictions adjusted for patient's characteristics (median value of 46.1 versus 54.3 µg/mL for observed and predicted concentrations, respectively, p = 0.012). However, the concentrations dropped at Day-4, which was not anticipated by the model (median values of 25.9 and 64.4 µg/mL for observed and predicted concentrations, respectively, p<10-6). There was no significant relationship between favipiravir concentrations and EBOV viral kinetics or mortality. CONCLUSIONS: Favipiravir plasma concentrations in the JIKI trial failed to achieve the target exposure defined before the trial. Furthermore, the drug concentration experienced an unanticipated drop between Day-2 and Day-4. The origin of this drop could be due to severe sepsis conditions and/or to intrinsic properties of favipiravir metabolism. Dose-ranging studies should be performed in healthy volunteers to assess the concentrations and the tolerance that could be achieved with high doses. TRIAL REGISTRATION: ClinicalTrials.gov NCT02329054.


Asunto(s)
Amidas/farmacocinética , Antivirales/farmacocinética , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Pirazinas/farmacocinética , Adolescente , Adulto , Anciano , Amidas/administración & dosificación , Antivirales/administración & dosificación , Niño , Preescolar , Ebolavirus/efectos de los fármacos , Ebolavirus/fisiología , Femenino , Guinea , Fiebre Hemorrágica Ebola/virología , Humanos , Masculino , Persona de Mediana Edad , Pirazinas/administración & dosificación , Adulto Joven
19.
Immunotherapy ; 6(6): 699-708, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24673720

RESUMEN

AIM: There is still no specific therapy for infection with the highly pathogenic avian influenza A virus (HPAI) H5N1, which caused 39 human cases with a 64% fatality rate in 2013. MATERIALS & METHODS: We prepared highly purified specific equine polyclonal immunoglobulin fragments (F(ab')2) against H5N1 and tested them for efficacy in vitro and with different administration schedules in H5N1-challenged BALB/c mice. RESULTS: in vitro, F(ab')2 neutralized 21 different H5N1 strains from different areas, representative of 11 different clades and sub-clades and 9 years of evolution of the virus. In vivo mouse experiments identified that the most efficient administration protocol consists of five consecutive daily injections after infection; 10 mg/kg giving a 60% increase in survival. CONCLUSION: These data demonstrate the ability of anti-H5N1 F(ab')2 to markedly reduce the mortality and morbidity associated with infection of mice with HPAI H5N1 virus, and their potential for human therapy.


Asunto(s)
Fragmentos Fab de Inmunoglobulinas/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Gripe Aviar/inmunología , Infecciones por Orthomyxoviridae/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Aves , Perros , Relación Dosis-Respuesta a Droga , Caballos , Humanos , Fragmentos Fab de Inmunoglobulinas/administración & dosificación , Fragmentos Fab de Inmunoglobulinas/farmacología , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Aviar/tratamiento farmacológico , Gripe Aviar/mortalidad , Inyecciones Intraperitoneales , Células de Riñón Canino Madin Darby , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/mortalidad , Filogenia , Especificidad de la Especie , Análisis de Supervivencia , Tasa de Supervivencia , Factores de Tiempo
20.
J Gen Virol ; 87(Pt 5): 1247-1257, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16603527

RESUMEN

Transient expression of Ebola virus (EBOV) glycoprotein GP causes downregulation of surface proteins, cell rounding and detachment, a phenomenon believed to play a central role in the pathogenicity of the virus. In this study, evidence that moderate expression of GP does not result in such morphological changes was provided. It was shown that GP continuously produced in 293T cells from the Kunjin virus replicon was correctly processed and transported to the plasma membrane without affecting the surface expression of beta1 and alpha5 integrins and major histocompatibility complex I molecules. The level of GP expression in Kunjin replicon GP-expressing cells was similar to that observed in cells infected with EBOV early in infection and lower than that produced in cells transfected with plasmid DNA, phCMV-GP, expressing GP from a strong promoter. Importantly, transient transfection of Kunjin replicon GP-expressing cells with GP-coding plasmid DNA resulted in overexpression of GP, which lead to the downregulation of surface molecules and massive rounding and detachment of transfected cells. Here, it was also demonstrated that cell rounding and downregulation of the surface markers are the late events in EBOV infection, whereas synthesis and massive release of virus particles occur at early steps and do not cause significant cytotoxic effects. These findings indicate that the synthesis of EBOV GP in virus-infected cells is controlled well by several mechanisms that do not allow GP overexpression and hence the early appearance of its cytotoxic properties.


Asunto(s)
Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/virología , Proteínas del Envoltorio Viral/metabolismo , Animales , Línea Celular , Efecto Citopatogénico Viral , Ebolavirus/metabolismo , Humanos , Riñón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA