RESUMEN
Maternal hypercaloric exposure during pregnancy and lactation is a risk factor for developing diseases associated with inflammation such as obesity, diabetes and, neurological diseases in the offspring. Neuroinflammation might modulate neuronal activation and flavonoids are dietary compounds that have been proven to exert anti-inflammatory properties. Thus, the aim of the present study is to evaluate the effect of maternal supplementation with flavonoids (kaempferol-3-O-glucoside and narirutin) on the prevention of depression-like behaviour in the female offspring of dams fed with an obesogenic diet during the perinatal period. Maternal programming was induced by high fat (HFD), high sugar (HSD), or cafeteria diets exposure and depressive like-behaviour, referred to as swimming, climbing, and immobility events, was evaluated around postnatal day 56â»60 before and after 30 mg/kg i.p. imipramine administration in the female offspring groups. Central inflammation was analyzed by measuring the TANK binding kinase 1 (TBK1) expression. We found that the offspring of mothers exposed to HSD programming failed to show the expected antidepressant effect of imipramine. Also, imipramine injection, to the offspring of mothers exposed to cafeteria diet, displayed a pro-depressive like-behaviour phenotype. However, dietary supplementation with flavonoids reverted the depression-like behaviour in the female offspring. Finally, we found that HSD programming increases the TBK1 inflammatory protein marker in the hippocampus. Our data suggest that maternal HSD programming disrupts the antidepressant effect of imipramine whereas cafeteria diet exposure leads to depressive-like behaviour in female offspring, which is reverted by maternal flavonoid supplementation.
Asunto(s)
Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Depresión/metabolismo , Flavonoides/farmacología , Fenómenos Fisiologicos Nutricionales Maternos/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Antidepresivos/administración & dosificación , Dieta , Disacáridos/administración & dosificación , Disacáridos/farmacología , Interacciones Farmacológicas , Femenino , Flavanonas/administración & dosificación , Flavanonas/farmacología , Flavonoides/administración & dosificación , Imipramina/administración & dosificación , Imipramina/farmacología , Inflamación/metabolismo , Inflamación/prevención & control , Quempferoles/administración & dosificación , Quempferoles/farmacología , Masculino , Monosacáridos/administración & dosificación , Monosacáridos/farmacología , Embarazo , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas WistarRESUMEN
BACKGROUND: Maternal overnutrition including pre-pregnancy, pregnancy and lactation promotes a lipotoxic insult leading to metabolic dysfunction in offspring. Diet-induced obesity models (DIO) show that changes in hypothalamic mitochondria fusion and fission dynamics modulate metabolic dysfunction. Using three selective diet formula including a High fat diet (HFD), Cafeteria (CAF) and High Sugar Diet (HSD), we hypothesized that maternal diets exposure program leads to selective changes in hypothalamic mitochondria fusion and fission dynamics in male offspring leading to metabolic dysfunction which is exacerbated by a second exposure after weaning. METHODS: We exposed female Wistar rats to nutritional programming including Chow, HFD, CAF, or HSD for 9 weeks (pre-mating, mating, pregnancy and lactation) or to the same diets to offspring after weaning. We determined body weight, food intake and metabolic parameters in the offspring from 21 to 60 days old. Hypothalamus was dissected at 60 days old to determine mitochondria-ER interaction markers by mRNA expression and western blot and morphology by transmission electron microscopy (TEM). Mitochondrial-ER function was analyzed by confocal microscopy using hypothalamic cell line mHypoA-CLU192. RESULTS: Maternal programming by HFD and CAF leads to failure in glucose, leptin and insulin sensitivity and fat accumulation. Additionally, HFD and CAF programming promote mitochondrial fusion by increasing the expression of MFN2 and decreasing DRP1, respectively. Further, TEM analysis confirms that CAF exposure after programing leads to an increase in mitochondria fusion and enhanced mitochondrial-ER interaction, which partially correlates with metabolic dysfunction and fat accumulation in the HFD and CAF groups. Finally, we identified that lipotoxic palmitic acid stimulus in hypothalamic cells increases Ca2+ overload into mitochondria matrix leading to mitochondrial dysfunction. CONCLUSIONS: We concluded that maternal programming by HFD induces hypothalamic mitochondria fusion, metabolic dysfunction and fat accumulation in male offspring, which is exacerbated by HFD or CAF exposure after weaning, potentially due to mitochondria calcium overflux.
RESUMEN
Contextual food conditioned behaviors require plasticity of glutamatergic neurotransmission in the reward system, involving changes in the expression of including a-amino-3-hydroxy-5-methylisoxazole 4-propionate receptors (AMPA), N-methyl-d-aspartic acid (NMDA) and metabotropic glutamate 2,3 (mGlur 2,3). However, the role of changes in glutamatergic synaptic markers on energy-dense palatable food preference during development has not been described. Here, we determine the effect of nutritional programing during gestation on fat food choices using a conditioned place preference (CPP) test and an operant training response and its effect on glutamatergic markers in the nucleus accumbens (Nac) shell and prefrontal cortex (PFC). Our data showed that rats displayed preference for palatable fat food and an increase in caloric intake when compared to a chow diet. Notably, 74% of rats showing a preference for fat food intake correlate with a positive HFD-paired score whereas 26% failed to get HFD-conditioned. Also, male rats trained under an operant training response schedule (FR1, FR5 and PR) showed high and low responder groups to work for food. Notably, hypercaloric nutritional programing of female rats leads to exacerbation for reinforcers in female offspring compared to offspring from chow diet. Finally, we found that an operant training response to palatable reinforcers correlates with upregulation of mGlur 2,3 in the NAc shell and PFC of male rats and female offspring. Also, we found selective Nr1 upregulation in NAc shell and the PFC of female offspring. Our data suggest that nutritional programing by hypercaloric intake leads to incentive motivation to work for food and synaptic plasticity alteration in the mesolimbic system.