Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 209(2): 250-261, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35768148

RESUMEN

Lipid and cholinergic mediators are inflammatory regulators, but their role in the immunopathology of COVID-19 is still unclear. Here, we used human blood and tracheal aspirate (TA) to investigate whether acetylcholine (Ach), fatty acids (FAs), and their derived lipid mediators (LMs) are associated with COVID-19 severity. First, we analyzed the perturbation profile induced by SARS-CoV-2 infection in the transcriptional profile of genes related to the ACh and FA/LM pathways. Blood and TA were used for metabolomic and lipidomic analyses and for quantification of leukocytes, cytokines, and ACh. Differential expression and coexpression gene network data revealed a unique transcriptional profile associated with ACh and FA/LM production, release, and cellular signaling. Transcriptomic data were corroborated by laboratory findings: SARS-CoV-2 infection increased plasma and TA levels of arachidonic acid, 5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid, 11-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic acid, and ACh. TA samples also exhibited high levels of PGE2, thromboxane B2, 12-oxo-5Z,8Z,10E,14Z-eicosatetraenoic acid, and 6-trans-leukotriene B4 Bioinformatics and experimental approaches demonstrated robust correlation between transcriptional profile in Ach and FA/LM pathways and parameters of severe COVID-19. As expected, the increased neutrophil-to-lymphocyte ratio, neutrophil counts, and cytokine levels (IL-6, IL-10, IL-1ß, and IL-8) correlated with worse clinical scores. Glucocorticoids protected severe and critical patients and correlated with reduced Ach levels in plasma and TA samples. We demonstrated that pulmonary and systemic hyperinflammation in severe COVID-19 are associated with high levels of Ach and FA/LM. Glucocorticoids favored the survival of patients with severe/critical disease, and this effect was associated with a reduction in ACh levels.


Asunto(s)
Acetilcolina , COVID-19 , Ácido Araquidónico , Ácidos Araquidónicos/farmacología , Ácidos Grasos , Glucocorticoides , Humanos , SARS-CoV-2
2.
Immunology ; 169(3): 323-343, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36740582

RESUMEN

COVID-19 has a broad spectrum of clinical manifestations associated with the host immune response heterogeneity. Despite the advances in COVID-19 research, it is still crucial to seek a panel of molecular markers that enable accurate stratification of COVID-19 patients. Here, we performed a study that combined analysis of blood transcriptome, demographic data, clinical aspects and laboratory findings from 66 participants classified into different degrees of COVID-19 severity and healthy subjects. We identified a perturbation in blood-leukocyte transcriptional profile associated with COVID-19 aggravation, which was mainly related to processes that disfavoured lymphocyte activation and favoured neutrophil activation. This transcriptional profile stratified patients according to COVID-19 severity. Hence, it enabled identification of a turning point in transcriptional dynamics that distinguished disease outcomes and non-hospitalized from hospitalized moderate patients. Central genes of this unique neutrophil signature were S100A9, ANXA3, CEACAM6, VNN1, OLFM4, IL1R2, TCN1 and CD177. Our study indicates the molecular changes that are linked with the differing clinical aspects presented by humans when suffering from COVID-19, which involve neutrophil activation.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , Neutrófilos , Transcriptoma , Biomarcadores
3.
Brain Behav Immun ; 114: 275-286, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37648004

RESUMEN

BACKGROUND: Sex-determined differences are rarely addressed in the management of diseases, despite well-known contrasting outcomes between female and male patients. In COVID-19 there is a remarkable disparity, with higher rates of mortality and more severe acute disease in men compared to women, who are mostly affected by long COVID-19. Furthermore, whether androgens play a protective or detrimental role in COVID-19 is still a matter of debate. Hence, the adequate management of the disease, especially regarding men presenting acute disease aggravation, still needs important data to elucidate the interplay between sex hormones and host immune responses that drive the worse evolution in male patients. METHODS: A cohort of 92 controls and 198 non-severe and severe COVID-19 patients, from both sexes, was assessed for clinical outcomes, plasma steroids, gonadotropins, sex hormone binding globulin (SHBG) and immune mediators, before vaccination. These data were correlated with the global gene expression of blood leukocytes. The androgen receptor (AR) signaling pathway was investigated by transcriptomics and tracheal aspirate was obtained from severe patients for SARS-COV-2 quantification in the respiratory tract. The interplay among clinical, endocrine and immunological data deciphered the sex differences in COVID-19. Importantly, statistical analyses, using 95% confidence interval, considered confounding factors such as age and comorbidities, to definitely parse the role of androgens in the disease outcome. RESULTS: There were notable contrasting levels of testosterone and dihydrotestosterone (DHT) throughout the disease course in male but not female patients. Inflammatory mediators presented significant negative correlations with testosterone, which was partially dependent on age and diabetes in men. Male subjects with severe COVID-19 had a significant up regulation of the AR signaling pathway, including modulation of TMPRSS2 and SRD5A1 genes, which are related to the viral infection and DHT production. Indeed, men had a higher viral load in the tracheal aspirate and levels of DHT were associated with increased relative risk of death. In contrast, the testosterone hormone, which was notably reduced in severe disease, was significantly related with susceptibility to COVID-19 worsening in male patients. Secondary hypogonadism was ruled out in the male severe COVID-19 subjects, as FSH, LH, and SHBG levels were not significantly altered. Instead, these subjects tended to have increased gonadotropin levels. Most interestingly, in this study we identified, for the first time, combined sets of clinical and immunoendocrine parameters that together predicted progression from non-severe to severe COVID-19 in men. One of the limitations of our study was the low or undetectable levels of DHT in many patients. Then, the evaluation of enzymes related to biosynthesis and signaling by androgens was mandatory and reiterated our findings. CONCLUSIONS: These original results unraveled the disease immunoendocrine regulation, despite vaccination or comorbidities and pointed to the fundamental divergent role of the androgens testosterone and DHT in the determination of COVID-19 outcomes in men. Therefore, sex-specific management of the dysregulated responses, treatments or public health measures should be considered for the control of COVID-19 pandemic.

4.
Int J Mol Sci ; 23(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36077133

RESUMEN

The non-classical histocompatibility antigen G (HLA-G) is an immune checkpoint molecule that has been implicated in viral disorders. We evaluated the plasma soluble HLA-G (sHLA-G) in 239 individuals, arranged in COVID-19 patients (n = 189) followed up at home or in a hospital, and in healthy controls (n = 50). Increased levels of sHLA-G were observed in COVID-19 patients irrespective of the facility care, gender, age, and the presence of comorbidities. Compared with controls, the sHLA-G levels increased as far as disease severity progressed; however, the levels decreased in critically ill patients, suggesting an immune exhaustion phenomenon. Notably, sHLA-G exhibited a positive correlation with other mediators currently observed in the acute phase of the disease, including IL-6, IL-8 and IL-10. Although sHLA-G levels may be associated with an acute biomarker of COVID-19, the increased levels alone were not associated with disease severity or mortality due to COVID-19. Whether the SARS-CoV-2 per se or the innate/adaptive immune response against the virus is responsible for the increased levels of sHLA-G are questions that need to be further addressed.


Asunto(s)
COVID-19 , Antígenos HLA-G , Antígenos de Histocompatibilidad Clase I , Humanos , Proteínas de Punto de Control Inmunitario , Plasma , SARS-CoV-2
5.
Immunology ; 150(1): 115-126, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27618667

RESUMEN

The clinical benefits of short-term therapy with glucocorticoids (GC) in patients with inflammatory bowel disease (IBD) are widely known. However, the effects of this treatment towards the re-establishment of the regulatory network in IBD are not fully explored. We have evaluated the immunological effects of the abbreviated GC therapy in experimental colitis induced by 3% dextran sulphate sodium in C57BL/6 mice. Treatment with GC improved disease outcome, constrained circulating leucocytes and ameliorated intestinal inflammation. The control of the local inflammatory responses involved a reduction in the expression of interferon-γ and interleukin-1ß, associated with augmented mRNA levels of peroxisome proliferator-activated receptors (α and γ) in intestine. Furthermore, there was a reduction of CD4+ T cells producing interferon-γ, together with an increased frequency of the putative regulatory population of T cells producing interleukin-10, in spleen. These systemic alterations were accompanied by a decrease in the proliferative potential of splenocytes of mice treated in vivo with GC. Notably, treatment with GC also led to an increase in the frequency of the regulatory markers GITR, CTLA-4, PD-1, CD73 and FoxP3, more prominently in spleen. Taken together, our results pointed to a role of GC in the control of leucocyte responsiveness and re-establishment of a regulatory system, which probably contributed to disease control and the restoration of immune balance. Finally, this is the first time that GC treatment was associated with the modulation of a broad number of regulatory markers in an experimental model of colitis.


Asunto(s)
Colitis/tratamiento farmacológico , Glucocorticoides/uso terapéutico , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Animales , Antígenos CD4/metabolismo , Células Cultivadas , Protocolos Clínicos , Colitis/inducido químicamente , Sulfato de Dextran , Proteína Relacionada con TNFR Inducida por Glucocorticoide/metabolismo , Humanos , Inmunomodulación , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratones , Receptores Activados del Proliferador del Peroxisoma/metabolismo
6.
Eur J Immunol ; 43(6): 1518-28, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23529839

RESUMEN

Breast cancer is a leading cause of neoplasia-associated death in women worldwide. Regulatory T (Treg) and Th17 cells are enriched within some tumors, but the role these cells play in invasive ductal carcinoma (IDC) of the breast is unknown. We show that CD25(+) CD4(+) T cells from PBMCs and tumor express high levels of Foxp3, GITR, CTLA-4, and CD103, indicating that tumor-infiltrating Treg cells are functional and possibly recruited by CCL22. Additionally, we observed upregulation of Th17-related molecules (IL-17A, RORC, and CCR6) and IL-17A produced by tumor-infiltrating CD4(+) and CD8(+) T lymphocytes. The angiogenic factors CXCL8, MMP-2, MMP-9, and vascular endothelial growth factor detected within the tumor are possibly induced by IL-17 and indicative of poor disease prognosis. Treg and Th17 cells were synchronically increased in IDC patients, with positive correlation between Foxp3, IL-17A, and RORC expression, and associated with tumor aggressiveness. Therefore, Treg and Th17 cells can affect disease progression by Treg-cell-mediated suppression of the effector T-cell response, as indicated by a decrease in the proliferation of T cells isolated from PBMCs of IDC patients and induction of angiogenic factors by IL-17-producing Th17. The understanding of regulation of the Treg/Th17 axis may result in novel perspectives for the control of invasive tumors.


Asunto(s)
Neoplasias de la Mama/inmunología , Carcinoma Ductal/inmunología , Interleucina-17/metabolismo , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Antígenos CD/metabolismo , Neoplasias de la Mama/patología , Carcinoma Ductal/patología , Proliferación Celular , Transformación Celular Neoplásica/inmunología , Quimiocina CCL22/metabolismo , Femenino , Factores de Transcripción Forkhead/metabolismo , Proteína Relacionada con TNFR Inducida por Glucocorticoide/metabolismo , Humanos , Interleucina-17/genética , Invasividad Neoplásica , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptores CCR6/metabolismo , Células Tumorales Cultivadas , Regulación hacia Arriba
7.
Immunology ; 138(2): 145-56, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23113506

RESUMEN

During infection, the host response develops effector mechanisms to combat the parasite. However, this response can become uncontrolled or regulated by mechanisms that modulate the inflammatory reaction. The number of parasites that infects the host, such as trypomastigotes in Chagas disease, may also influence immune activation and disease pathology. We evaluated the inflammation and immune regulation that follows Trypanosoma cruzi infection with low (300), intermediate (3000) or high (30000) parasite loads. Our results showed that the load of parasite inoculum influenced disease outcome: the higher the number of parasites in the inoculum, the lower were the survival rates. There was a strong association between parasitism and inflammatory infiltrate in the heart and the parasite inoculum determined cytokine interplay in this tissue, as shown by increased interferon-γ, tumour necrosis factor-α, interleukin-17 (IL-17) and IL-23 in the 300 and 30000 inoculum groups, higher IL-4 and IL-10 in the intermediate-inoculum mice, and elevated IL-6 production in the heart of mice in the 3000 and 30000 groups. The number of T cells and antigen-presenting cells was augmented in the infected groups, especially for the splenic CD4(+) CD25(+) regulatory T cells expressing CD45RB(low) , GITR, PD-1 and FoxP3 in the group with the highest inoculum. Interestingly, these mice also presented an apparent decrease in CD4(+) CD25(+) FoxP3(+) cells in the cardiac infiltrate, in contrast to the intermediate inoculum group, which showed elevated numbers of these regulatory leucocytes in the heart. Finally, our results demonstrated that parasite load during T. cruzi infection is linked to the response pattern that will result in parasite/inflammation control or tissue damage.


Asunto(s)
Enfermedad de Chagas/inmunología , Citocinas/inmunología , Linfocitos T Reguladores/inmunología , Trypanosoma cruzi/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Antígenos de Diferenciación/inmunología , Enfermedad de Chagas/patología , Relación Dosis-Respuesta Inmunológica , Masculino , Ratones , Miocardio/inmunología , Miocardio/patología , Linfocitos T Reguladores/patología
8.
Int Immunopharmacol ; 115: 109669, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36634418

RESUMEN

Cinnamaldehyde is a natural product with anti-inflammatory and immune-modulatory properties, known to regulate host responses to bacterial stimuli. This study aimed to investigate the effects of cinnamaldehyde on ligature-induced periodontitis in rats, and its impact on the modulation of human peripheral blood mononuclear cells (PBMC). Male Wistar rats were assigned into three groups:i) control: no ligature + vehicle; ii) ligature: ligature + vehicle; and iii) ligature + cinnamaldehyde (50 mg/kg); all treatments by daily oral gavage. After 14 days of induced periodontitis, the hemimandibles were collected for bone loss evaluation. The gingival levels of IL-1ß, MMP-9 and iNOS mRNA were evaluated. Nitric oxide (NO) was measured in both rat saliva and plasma. PBMC were stimulated with Aggregatibacter actinomycetemcomitans (Aa) in the presence or absence of cinnamaldehyde (5, 20 e 40 µM), and cytokine production was quantified in cell supernatant. Proliferating lymphocytes were taken for flow cytometer reading, while culture supernatants were used for IFN-γ and IL-10 assessment. The ligature group had both increased alveolar bone loss and gingival expression of IL-1ß, MMP-9 and iNOS compared to the control group. All parameters were attenuated by cinnamaldehyde treatment. Lower salivary but not plasma NO was detected in the cinnamaldehyde compared to the ligature group. Aa-stimulated PBMCs treated with cinnamaldehyde produced less IL-1ß; the compound also attenuated lymphocyte proliferation in a dose-dependent manner, as well as cell IL-10 production. Cinnamaldehyde treatment reduced periodontal bone loss, and downregulated key inflammatory mediators and human PBMC responses, pointing to novel potential therapeutic effects of this compound.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Humanos , Ratas , Masculino , Animales , Ratas Wistar , Leucocitos Mononucleares/metabolismo , Interleucina-10/uso terapéutico , Metaloproteinasa 9 de la Matriz , Periodontitis/metabolismo , Pérdida de Hueso Alveolar/tratamiento farmacológico , Pérdida de Hueso Alveolar/metabolismo , Modelos Animales de Enfermedad
9.
Viruses ; 15(2)2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36851787

RESUMEN

COVID-19 is associated with a dysregulated immune response. Currently, several medicines are licensed for the treatment of this disease. Due to their significant role in inhibiting pro-inflammatory cytokines and lipid mediators, glucocorticoids (GCs) have attracted a great deal of attention. Similarly, the endocannabinoid (eCB) system regulates various physiological processes including the immunological response. Additionally, during inflammatory and thrombotic processes, phospholipids from cell membranes are cleaved to produce platelet-activating factor (PAF), another lipid mediator. Nonetheless, the effect of GCs on this lipid pathway during COVID-19 therapy is still unknown. This is a cross-sectional study involving COVID-19 patients (n = 200) and healthy controls (n = 35). Target tandem mass spectrometry of plasma lipid mediators demonstrated that COVID-19 severity affected eCBs and PAF synthesis. This increased synthesis of eCB was adversely linked with systemic inflammatory markers IL-6 and sTREM-1 levels and neutrophil counts. The use of GCs altered these lipid pathways by reducing PAF and increasing 2-AG production. Corroborating this, transcriptome analysis of GC-treated patients blood leukocytes showed differential modulation of monoacylglycerol lipase and phospholipase A2 gene expression. Altogether, these findings offer a breakthrough in our understanding of COVID-19 pathophysiology, indicating that GCs may promote additional protective pharmacological effects by influencing the eCB and PAF pathways involved in the disease course.


Asunto(s)
COVID-19 , Factor de Activación Plaquetaria , Humanos , Estudios Transversales , Endocannabinoides , Glucocorticoides/uso terapéutico
10.
Cells ; 12(15)2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37566018

RESUMEN

SARS-CoV-2 infection triggers distinct patterns of disease development characterized by significant alterations in host regulatory responses. Severe cases exhibit profound lung inflammation and systemic repercussions. Remarkably, critically ill patients display a "lipid storm", influencing the inflammatory process and tissue damage. Sphingolipids (SLs) play pivotal roles in various cellular and tissue processes, including inflammation, metabolic disorders, and cancer. In this study, we employed high-resolution mass spectrometry to investigate SL metabolism in plasma samples obtained from control subjects (n = 55), COVID-19 patients (n = 204), and convalescent individuals (n = 77). These data were correlated with inflammatory parameters associated with the clinical severity of COVID-19. Additionally, we utilized RNAseq analysis to examine the gene expression of enzymes involved in the SL pathway. Our analysis revealed the presence of thirty-eight SL species from seven families in the plasma of study participants. The most profound alterations in the SL species profile were observed in patients with severe disease. Notably, a predominant sphingomyelin (SM d18:1) species emerged as a potential biomarker for COVID-19 severity, showing decreased levels in the plasma of convalescent individuals. Elevated SM levels were positively correlated with age, hospitalization duration, clinical score, and neutrophil count, as well as the production of IL-6 and IL-8. Intriguingly, we identified a putative protective effect against disease severity mediated by SM (d18:1/24:0), while ceramide (Cer) species (d18:1/24:1) and (d18:1/24:0)were associated with increased risk. Moreover, we observed the enhanced expression of key enzymes involved in the SL pathway in blood cells from severe COVID-19 patients, suggesting a primary flow towards Cer generation in tandem with SM synthesis. These findings underscore the potential of SM as a prognostic biomarker for COVID-19 and highlight promising pharmacological targets. By targeting sphingolipid pathways, novel therapeutic strategies may emerge to mitigate the severity of COVID-19 and improve patient outcomes.


Asunto(s)
COVID-19 , Esfingomielinas , Humanos , Pronóstico , SARS-CoV-2/metabolismo , Ceramidas/metabolismo , Esfingolípidos/metabolismo , Biomarcadores
11.
Biomolecules ; 12(5)2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35625532

RESUMEN

Patients with COVID-19 predominantly have a respiratory tract infection and acute lung failure is the most severe complication. While the molecular basis of SARS-CoV-2 immunopathology is still unknown, it is well established that lung infection is associated with hyper-inflammation and tissue damage. Matrix metalloproteinases (MMPs) contribute to tissue destruction in many pathological situations, and the activity of MMPs in the lung leads to the release of bioactive mediators with inflammatory properties. We sought to characterize a scenario in which MMPs could influence the lung pathogenesis of COVID-19. Although we observed high diversity of MMPs in lung tissue from COVID-19 patients by proteomics, we specified the expression and enzyme activity of MMP-2 in tracheal-aspirate fluid (TAF) samples from intubated COVID-19 and non-COVID-19 patients. Moreover, the expression of MMP-8 was positively correlated with MMP-2 levels and possible shedding of the immunosuppression mediator sHLA-G and sTREM-1. Together, overexpression of the MMP-2/MMP-8 axis, in addition to neutrophil infiltration and products, such as reactive oxygen species (ROS), increased lipid peroxidation that could promote intensive destruction of lung tissue in severe COVID-19. Thus, the inhibition of MMPs can be a novel target and promising treatment strategy in severe COVID-19.


Asunto(s)
COVID-19 , Metaloproteinasa 2 de la Matriz , Antígenos HLA-G , Humanos , Inmunidad , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 8 de la Matriz/metabolismo , Estrés Oxidativo , SARS-CoV-2
12.
Eur J Immunol ; 40(10): 2830-6, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20812234

RESUMEN

Mucosal leishmaniasis (ML) is characterised by severe tissue destruction. Herein, we evaluated the involvement of the IL-17-type response in the inflammatory infiltrate of biopsy specimens from 17 ML patients. IL-17 and IL-17-inducing cytokines (IL-1ß, IL-23, IL-6 and TGF-ß) were detected by immunohistochemistry in ML patients. IL-17(+) cells exhibited CD4(+), CD8(+) or CD14(+) phenotypes, and numerous IL-17(+) cells co-expressed the CC chemokine receptor 6 (CCR6). Neutrophils, a hallmark of Th17-mediated inflammation, were regularly detected in necrotic and perinecrotic areas and stained positive for neutrophil elastase, myeloperoxidase and MMP-9. Taken together, these observations demonstrate the existence of Th17 cells in ML lesions associated with neutrophils in areas of tissue injury and suggest that IL-17 is involved in ML pathogenesis.


Asunto(s)
Interleucina-17/inmunología , Leishmania/inmunología , Leishmaniasis Mucocutánea/inmunología , Neutrófilos/inmunología , Receptores CCR6/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Humanos , Inmunohistoquímica , Interleucina-17/biosíntesis , Leishmaniasis Mucocutánea/parasitología , Masculino , Metaloproteinasa 9 de la Matriz/sangre , Metaloproteinasa 9 de la Matriz/inmunología , Microscopía Confocal , Persona de Mediana Edad , Neutrófilos/enzimología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Peroxidasa/sangre , Peroxidasa/inmunología , Estadísticas no Paramétricas
13.
Front Immunol ; 12: 681671, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34349757

RESUMEN

The sialotranscriptomes of Aedes aegypti revealed a transcript overexpressed in female salivary glands that codes a mature 7.8 kDa peptide. The peptide, specific to the Aedes genus, has a unique sequence, presents a putative secretory nature and its function is unknown. Here, we confirmed that the peptide is highly expressed in the salivary glands of female mosquitoes when compared to the salivary glands of males, and its secretion in mosquito saliva is able to sensitize the vertebrate host by inducing the production of specific antibodies. The synthetic version of the peptide downmodulated nitric oxide production by activated peritoneal murine macrophages. The fractionation of a Ae. aegypti salivary preparation revealed that the fractions containing the naturally secreted peptide reproduced the nitric oxide downmodulation. The synthetic peptide also selectively interfered with cytokine production by murine macrophages, inhibiting the production of IL-6, IL-12p40 and CCL2 without affecting TNF-α or IL-10 production. Likewise, intracellular proteins associated with macrophage activation were also distinctively modulated: while iNOS and NF-κB p65 expression were diminished, IκBα and p38 MAPK expression did not change in the presence of the peptide. The anti-inflammatory properties of the synthetic peptide were tested in vivo on a dextran sulfate sodium-induced colitis model. The therapeutic administration of the Ae. aegypti peptide reduced the leukocytosis, macrophage activity and nitric oxide levels in the gut, as well as the expression of cytokines associated with the disease, resulting in amelioration of its clinical signs. Given its biological properties in vitro and in vivo, the molecule was termed Aedes-specific MOdulatory PEptide (AeMOPE-1). Thus, AeMOPE-1 is a novel mosquito-derived immunobiologic with potential to treat immune-mediated disorders.


Asunto(s)
Aedes/inmunología , Colitis/etiología , Colitis/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Proteínas y Péptidos Salivales/inmunología , Secuencia de Aminoácidos , Animales , Biomarcadores , Colitis/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Inmunomodulación , Activación de Linfocitos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Proteínas y Péptidos Salivales/química , Linfocitos T/inmunología , Linfocitos T/metabolismo
14.
Viruses ; 13(12)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34960790

RESUMEN

Uncontrolled inflammatory responses play a critical role in coronavirus disease (COVID-19). In this context, because the triggering-receptor expressed on myeloid cells-1 (TREM-1) is considered an intrinsic amplifier of inflammatory signals, this study investigated the role of soluble TREM-1 (sTREM-1) as a biomarker of the severity and mortality of COVID-19. Based on their clinical scores, we enrolled COVID-19 positive patients (n = 237) classified into mild, moderate, severe, and critical groups. Clinical data and patient characteristics were obtained from medical records, and their plasma inflammatory mediator profiles were evaluated with immunoassays. Plasma levels of sTREM-1 were significantly higher among patients with severe disease compared to all other groups. Additionally, levels of sTREM-1 showed a significant positive correlation with other inflammatory parameters, such as IL-6, IL-10, IL-8, and neutrophil counts, and a significant negative correlation was observed with lymphocyte counts. Most interestingly, sTREM-1 was found to be a strong predictive biomarker of the severity of COVID-19 and was related to the worst outcome and death. Systemic levels of sTREM-1 were significantly correlated with the expression of matrix metalloproteinases (MMP)-8, which can release TREM-1 from the surface of peripheral blood cells. Our findings indicated that quantification of sTREM-1 could be used as a predictive tool for disease outcome, thus improving the timing of clinical and pharmacological interventions in patients with COVID-19.


Asunto(s)
Biomarcadores/sangre , COVID-19/diagnóstico , COVID-19/mortalidad , Leucocitos/metabolismo , Metaloproteinasa 8 de la Matriz/metabolismo , Índice de Severidad de la Enfermedad , Receptor Activador Expresado en Células Mieloides 1/sangre , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Brasil , Femenino , Humanos , Inflamación , Interleucina-10/sangre , Interleucina-6/sangre , Interleucina-8/sangre , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Neutrófilos/metabolismo , Estudios Prospectivos , SARS-CoV-2 , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Adulto Joven
15.
J Clin Periodontol ; 37(7): 591-600, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20642629

RESUMEN

AIMS: The aim of this study was to identify the presence and characterize the function of regulatory T cells (Tregs) in experimental periodontitis in mice. MATERIAL AND METHODS: C57Bl/6 mice infected with Actinobacillus actinomycetemcomitans, treated or not with anti-glucocorticoid-inducible tumour necrosis factor receptor (anti-GITR) to inhibit Tregs function, were analysed regarding inflammatory cell and Tregs influx, alveolar bone loss and cytokine expression/production (analysed by real-time polymerase chain reaction and ELISA) throughout experimental periodontitis. RESULTS: A. actinomycetemcomitans inoculation in mice resulted in periodontal disease characterized by marked alveolar bone loss and an influx of inflammatory cells. Flow cytometry evaluation of inflammatory cells demonstrated an increased number of CD4(+)CD25(+) and CD4(+)FOXp3(+) cells, characterizing the presence of Tregs in the periodontal environment in a late stage after infection. Tregs-associated cytokines interleukin-10 (IL-10), cytotoxic T lymphocyte-associated molecule 4 (CTLA-4) and transforming growth factor-beta (TGF-beta) were found to be expressed/produced in a kinetics that resembles Tregs migration. Treatment with anti-GITR, which inhibits Tregs function, showed increased alveolar bone loss and inflammatory cell migration. A reduction in IL-10, CTLA-4 and TGF-beta levels was also observed, while interferon-gamma, tumour necrosis factor-alpha and receptor activator for nuclear factor kappaB ligand levels were increased. However, bacterial load and C-reactive protein serum did not show any differences. CONCLUSION: Taken together, our results showed that the presence of Treg cells attenuates the severity of experimental periodontitis without impairment in the control of infection.


Asunto(s)
Pérdida de Hueso Alveolar/inmunología , Periodontitis Crónica/inmunología , Linfocitos T Reguladores/inmunología , Aggregatibacter actinomycetemcomitans , Animales , Antígenos CD/biosíntesis , Antígenos CD/genética , Antígeno CTLA-4 , Quimiotaxis de Leucocito , Citometría de Flujo , Expresión Génica , Inmunofenotipificación , Interferón gamma/biosíntesis , Interferón gamma/genética , Interleucina-10/biosíntesis , Interleucina-10/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Ligando RANK/biosíntesis , Ligando RANK/genética , Receptores del Factor de Necrosis Tumoral/antagonistas & inhibidores , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta/biosíntesis , Factor de Crecimiento Transformador beta/genética , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética
16.
Eur J Oral Sci ; 118(1): 19-28, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20156261

RESUMEN

The aim of this study was to unravel the mechanisms by which interleukin (IL)-10, a potent pleiotropic cytokine, modulates alveolar bone homeostasis in C57BL/6 wild-type (WT) and IL-10 knockout (IL-10 KO) mice, evaluated at 8, 24, and 48 wk of age. Interleukin-10 KO mice presented significant alveolar bone loss when compared with WT mice, and this was not associated with changes in leukocyte counts or bacterial load. The levels of expression of messenger RNA (mRNA) for tumor necrosis factor-alpha (TNF-alpha), IL-1beta, IL-6, transforming growth factor-beta (TGF-beta), receptor activator of nuclear factor kappaB ligand (RANKL), osteoprotegerin (OPG), and matrix metalloproteinase 13 (MMP13) were similar between both strains, whereas a significant decrease of tissue inhibitor of metalloproteinase 1 (TIMP1) mRNA expression was found at 48 wk in IL-10 KO mice. The osteoblast markers core binding factor alpha1 (CBFA1) and type I collagen (COL-I) were expressed at similar levels in both strains, whereas the levels of alkaline phosphatase (ALP) and osteocalcin (OCN), and those of the osteocyte markers phosphate-regulating gene endopeptidases (PHEX) and dentin matrix protein 1 (DMP1) were significantly lower in IL-10 KO mice. Our results demonstrate that the alveolar bone loss in the absence of IL-10 was associated with a reduced expression of osteoblast and osteocyte markers, an effect independent of microbial, inflammatory or bone-resorptive pathways.


Asunto(s)
Pérdida de Hueso Alveolar/metabolismo , Interleucina-10/biosíntesis , Interleucina-10/fisiología , Osteoblastos/metabolismo , Osteocitos/metabolismo , Proceso Alveolar/citología , Proceso Alveolar/metabolismo , Animales , Biomarcadores/metabolismo , Colágeno Tipo I/biosíntesis , Densitometría , Regulación hacia Abajo , Proteínas de la Matriz Extracelular/biosíntesis , Expresión Génica , Interleucina-10/genética , Recuento de Leucocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteocalcina/biosíntesis , Endopeptidasa Neutra Reguladora de Fosfato PHEX/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Inhibidor Tisular de Metaloproteinasa-1/biosíntesis
17.
Immunology ; 128(1 Suppl): e432-41, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19191916

RESUMEN

Strongyloides stercoralis is an intestinal nematode capable of chronic, persistent infection and hyperinfection of the host; this can lead to dissemination, mainly in immunosuppressive states, in which the infection can become severe and result in the death of the host. In this study, we investigated the immune response against Strongyloides venezuelensis infection in major histocompatibility complex (MHC) class I or class II deficient mice. We found that MHC II(-/-) animals were more susceptible to S. venezuelensis infection as a result of the presence of an elevated number of eggs in the faeces and a delay in the elimination of adult worms compared with wild-type (WT) and MHC I(-/-) mice. Histopathological analysis revealed that MHC II(-/-) mice had a mild inflammatory infiltration in the small intestine with a reduction in tissue eosinophilia. These mice also presented a significantly lower frequency of eosinophils and mononuclear cells in the blood, together with reduced T helper type 2 (Th2) cytokines in small intestine homogenates and sera compared with WT and MHC I(-/-) animals. Additionally, levels of parasite-specific immunoglobulin M (IgM), IgA, IgE, total IgG and IgG1 were also significantly reduced in the sera of MHC II(-/-) infected mice, while a non-significant increase in the level of IgG2a was found in comparison to WT or MHC I(-/-) infected mice. Together, these data demonstrate that expression of MHC class II but not class I molecules is required to induce a predominantly Th2 response and to achieve efficient control of S. venezuelensis infection in mice.


Asunto(s)
Citocinas/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Intestino Delgado/inmunología , Strongyloides , Estrongiloidiasis/inmunología , Animales , Citocinas/biosíntesis , Eosinófilos/inmunología , Eosinófilos/parasitología , Heces/parasitología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase II/genética , Inmunoglobulinas/sangre , Intestino Delgado/parasitología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/parasitología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Recuento de Huevos de Parásitos , Estrongiloidiasis/genética , Estrongiloidiasis/parasitología , Células Th2/inmunología , Células Th2/parasitología
18.
Toxicol Appl Pharmacol ; 234(2): 256-65, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19027770

RESUMEN

Chlorhexidine (CHX), widely used as antiseptic and therapeutic agent in medicine and dentistry, has a toxic effect both in vivo and in vitro. The intrinsic mechanism underlying CHX-induced cytotoxicity in eukaryotic cells is, however, still unknown. A recent study from our laboratory has suggested that CHX may induce death in cultured L929 fibroblasts via endoplasmic reticulum (ER) stress. This hypothesis was further tested by means of light and electron microscopy, quantification of apoptosis and necrosis by flow cytometry, fluorescence visualization of the cytoskeleton and endoplasmic reticulum, and evaluation of the expression of 78-kDa glucose-regulated protein 78 (Grp78), a marker of activation of the unfolded protein response (UPR) in cultured L929 fibroblasts. Our finding showing increased Grp 78 expression in CHX-treated cells and the results of flow cytometry, cytoskeleton and endoplasmic reticulum fluorescence visualization, and scanning and transmission electron microscopy allowed us to suggest that CHX elicits accumulation of proteins in the endoplasmic reticulum, which causes ER overload, resulting in ER stress and cell death either by necrosis or apoptosis. It must be pointed out, however, that this does not necessarily mean that ER stress is the only way that CHX kills L929 fibroblasts, but rather that ER stress is an important target or indicator of cell death induced by this drug.


Asunto(s)
Apoptosis/efectos de los fármacos , Clorhexidina/toxicidad , Desinfectantes/toxicidad , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/patología , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Necrosis/patología , Actinas/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Chaperón BiP del Retículo Endoplásmico , Citometría de Flujo , Colorantes Fluorescentes , Proteínas de Choque Térmico/metabolismo , Ratones , Microscopía Electrónica de Rastreo , Chaperonas Moleculares/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Proteínas Proto-Oncogénicas c-bcl-2/genética , Tubulina (Proteína)/metabolismo
19.
J Clin Periodontol ; 36(9): 726-38, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19659894

RESUMEN

AIMS: Our objective was to evaluate the association between the MMP1-1607 single-nucleotide polymorphism (SNP), periodontopathogens and inflammatory cytokines with matrix metalloproteinase-1 (MMP-1) mRNA levels in vitro and in vivo. MATERIALS AND METHODS: This study investigated the influence of genetic (MMP1-1607 SNP), microbial (Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, Actinobacillus actinomycetemcomitans) and inflammatory [tumour necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta)] factors on the determination of MMP-1 mRNA levels in periodontal tissues of non-smoker chronic periodontitis (CP, N=178) and control (C, N=190) groups. The effects of single and repeated lipopolysaccharide (LPS) and inflammatory cytokine stimulation of macrophages with distinct MMP1-1607 SNP genotypes were also investigated. RESULTS: In healthy tissues, the MMP1-1607 2G allele was associated with higher MMP-1 levels while in CP MMP-1 levels were associated with the presence and load of periodontopathogens, and also with TNF-alpha and IL-1beta expression irrespective of the MMP1-1607 genotype. In vitro data demonstrate that in 2G macrophages low- and intermediate-dose LPS and TNF-alpha+IL-1beta stimulation was associated with increased MMP-1 expression, while strong and repeated stimulation resulted in higher MMP-1 levels irrespective of the MMP1-1607 genotype. CONCLUSION: Our data demonstrate a limited role for MMP1-1607 SNP in periodontitis, where the extensive chronic antigenic challenge exposure overcomes the genetic control and plays a major role in the determination of MMP-1 expression.


Asunto(s)
Bacterias Anaerobias/fisiología , Periodontitis Crónica/enzimología , Periodontitis Crónica/microbiología , Citocinas/metabolismo , Metaloproteinasa 1 de la Matriz/biosíntesis , Metaloproteinasa 1 de la Matriz/genética , Adulto , Antígenos Bacterianos/fisiología , Bacterias Anaerobias/genética , Estudios de Casos y Controles , Periodontitis Crónica/genética , ADN Bacteriano/análisis , Femenino , Predisposición Genética a la Enfermedad , Humanos , Interleucina-1beta/metabolismo , Lipopolisacáridos/fisiología , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , ARN Mensajero/análisis , Análisis de Regresión , Factor de Necrosis Tumoral alfa/metabolismo
20.
J Leukoc Biol ; 84(6): 1565-73, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18725394

RESUMEN

Periodontal diseases are infectious diseases, in which periodontopathogens trigger chronic inflammatory and immune responses that lead to tissue destruction. It occurs through the generation of metalloproteinases and the activation of bone resorption mechanisms. Anti-inflammatory cytokines such as IL-10 seem to attenuate periodontal tissue destruction through the induction of tissue inhibitors of metalloproteinases (TIMPs) and the inhibitor of osteoclastogenesis osteoprotegerin (OPG). A high individual variation in levels of IL-10 mRNA is verified in periodontitis patients, which is possibly determined by genetic polymorphisms. In this study, the IL-10 promoter -592C/A single nucleotide polymorphism (SNP), which is associated with a decrease in IL-10 production, was analyzed by RFLP in 116 chronic periodontitis (CP) patients and 173 control (C) subjects, and the IL-10, TIMPs, and OPG mRNA expression levels in diseased gingival tissues were determined by real-time-PCR. The IL-10-592 SNP CA (P=0.0012/OR=2.4/CI:1.4-4.1), AA (P=0.0458/OR=2.3/CI:1.1-4.9), and CA+AA (P=0.0006/OR=2.4/CI:1.4-3.4) genotypes and the allele A (P=0.0036/OR=1.7/CI:1.2-2.4) were found to be significantly more prevalent in the CP group when compared with control subjects. Both CA and AA genotypes were associated with lower levels of IL-10, TIMP-3, and OPG mRNA expression in diseased periodontal tissues and were also associated with disease severity as mean pocket depth. Taken together, the results presented here demonstrate that IL10-592 SNP is functional in CP, being associated with lower levels of IL-10 mRNA expression, which is supposed to consequently decrease the expression of the downstream genes TIMP-3 and OPG, and influence periodontal disease outcome.


Asunto(s)
Periodontitis Crónica/genética , Interleucina-10/genética , Osteoprotegerina/genética , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Inhibidor Tisular de Metaloproteinasa-3/genética , Adulto , Estudios de Casos y Controles , Femenino , Genotipo , Encía/metabolismo , Encía/patología , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA