RESUMEN
Ion-selective membranes are crucial in various chemical and physiological processes. Numerous studies have demonstrated progress in separating monovalent/multivalent ions, but efficient monovalent/monovalent ion sieving remains a great challenge due to their same valence and similar radii. Here, this work reports a two-dimensional (2D) MXene membrane with super-aligned slit-shaped nanochannels with ultrahigh monovalent ion selectivity. The MXene membrane is prepared by applying shear forces to a liquid-crystalline (LC) MXene dispersion, which is conducive to the highly-ordered stacking of the MXene nanosheets. The obtained LC MXene membrane (LCMM) exhibits ultrahigh selectivities toward Li+ /Na+ , Li+ /K+ , and Li+ /Rb+ separation (≈45, ≈49, and ≈59), combined with a fast Li+ transport with a permeation rate of ≈0.35â mol m-2 h-1 , outperforming the state-of-the-art membranes. Theoretical calculations indicate that in MXene nanochannels, the hydrated Li+ with a tetrahedral shape has the smallest diameter among the monovalent ions, contributing to the highest mobility. Besides, the weakest interaction is found between hydrated Li+ and MXene channels which also contributes to the ultrafast permeation of Li+ through the super-aligned MXene channels. This work demonstrates the capability of MXene membranes in monovalent ion separation, which also provides a facile and general strategy to fabricate lamellar membranes in a large scale.
RESUMEN
Two-dimensional (2D) materials with high chemical stability have attracted intensive interest in membrane design for the separation of organic solvents. As a novel 2D material, polymeric fullerenes (C60)∞ with distinctive properties are very promising for the development of innovative membranes. In this work, we report the construction of a 2D (C60)∞ nanosheet membrane for organic solvent separation. The pathways of the (C60)∞ nanosheet membrane are constructed by sub-1-nm lateral channels and nanoscale in-plane pores created by the depolymerization of the (C60)∞ nanosheets. Attributing to ordered and shortened transport pathways, the ultrathin porous (C60)∞ membrane is superior in organic solvent separation. The hexane, acetone, and methanol fluxes are up to 1146.3±53, 900.4±41, and 879.5±42â kg â m-2 â h-1, respectively, which are up to 130 times higher than those of the state-of-the-art membranes with similar dye rejection. Our findings demonstrate the prospect of 2D (C60)∞ as a promising nanofiltration membrane in the separation of organic solvents from macromolecular compounds such as dyes, drugs, hormones, etc.
RESUMEN
Metal-organic framework (MOF)-based membranes excel in molecular separation, attracting significant research interest. The crystallographic microstructure and selective adsorption capacity of MOFs closely correlate with their gas separation performance. Here, aniline was added to the ZIF-8 synthesis in varying concentrations. Aniline, encapsulated within ZIF-8 cavities, interacts strongly with the 2-methylimidazole linker, resulting in both a shift in crystallographic phase from I_43â m to Cm in Rietveld refinement of X-ray diffraction (XRD) patterns and the selective adsorption behavior between propylene and propane. Consequently, an aniline decorative ZIF-8 (Anix-ZIF-8) membrane was prepared using a fast current-driven synthesis method, which exhibits good propylene/propane separation selectivity of up to 85. Calculation of the interaction energy between aniline and the various crystallographic phases of ZIF-8 using density functional theory (DFT) further verifies that aniline not only promotes the formation of crystallographic Cm phase, but also enhances the adsorption selectivity of propylene over propane. Aniline modification effectively tunes the crystallographic microstructure of ZIF-8, thereby, improving molecular sieving capabilities.
RESUMEN
Metal-organic framework (MOF) membranes have attracted significant research interest in gas separation, but efficient helium (He) separation remains a challenge due to the weak polarizability of He and the intrinsic pore size flexibility of MOFs. Herein, incorporated fullerenes (C60 and C70) were used to tune the crystallographic phase composition of ZIF-8 membranes, thus creating small and fixed apertures for selective He permeation. The fullerene-modified ZIF-8 (C60@ZIF-8 and C70@ZIF-8) membranes contain about 20% of the rigid-lattice ZIF-8_I-43m phase and have been prepared as 200-350 nm thick supported layers through electrochemical synthesis. They show a significantly enhanced molecular sieving for He/N2,CH4 together with a satisfactory He permeance of >200 GPU. Specifically, the He/N2 selectivity of the C70@ZIF-8 membrane is up to 30.4, which is much higher than that of the fullerene-free ZIF-8 membrane (5.1) and nearly an order of magnitude higher than those of other reported He-selective MOF membranes. A continuous long-term gas permeation test over 780 h under dry and humid conditions proved the excellent stability of the fullerene-modified ZIF-8 membranes. The general validity and versatility of the proposed strategy for MOF membrane preparation are also demonstrated by the enhancement of the separation performance of a fullerene-modified ZIF-76 membrane.
RESUMEN
The soaring development of industry exacerbates the shortage of fresh water, making drinking water production an urgent demand. Membrane techniques feature the merits of high efficiency, low energy consumption, and easy operation, deemed as the most potential technology to purify water. Recently, a new type of two-dimensional materials, MXenes as the transition metal carbides or nitrides in the shape of nanosheets, have attracted enormous interest in water purification due to their extraordinary properties such as adjustable hydrophilicity, easy processibility, antifouling resistance, mechanical strength, and light-to-heat transformation capability. In pioneering studies, MXene-based membranes have been evaluated in the past decade for drinking water production including the separation of bacteria, dyes, salts, and heavy metals. This review focuses on the recent advancement of MXene-based membranes for drinking water production. A brief introduction of MXenes is given first, followed by descriptions of their unique properties. Then, the preparation methods of MXene membranes are summarized. The various applications of MXene membranes in water treatment and the corresponding separation mechanisms are discussed in detail. Finally, the challenges and prospects of MXene membranes are presented with the hope to provide insightful guidance on the future design and fabrication of high-performance MXene membranes.
RESUMEN
Azeotropic organic solvent mixture separation is common in the chemical industry but extremely difficult. Zeolitic imidazolate framework-67 (ZIF-67) shows great potential in organic solvent mixture separation due to its rigid micropores and excellent stability. However, due to the fast nucleation rate, it is a great challenge to prepare continuous ZIF-67 membrane layers with ultrathin thickness. In this study, a hydroxy salt layer with high inducible activity was synthesized as a precursor on different porous substrates to prepare ZIF-67 membranes at room temperature. The precursor layer enables an intact ZIF-67 membrane with an ultrathin thickness of 176±12â nm. The experimental and simulation results confirmed that the size sieving through the pore windows and the preferential adsorption of polar solvent molecules provide the ZIF-67 membrane an unprecedented separation performance such as high separation factors and fluxes, for four types of azeotropic organic solvent mixtures.
RESUMEN
Graphdiynes (GDYs), two-dimensional graphene-like carbon systems, are considered as potential advanced membrane material due to their unique physicochemical features. Nevertheless, the scale-up of integrated GDY membranes is technologically challenging, and most studies remain at the theoretical stage. Herein, we report a simple and efficient alkynylated surface-mediated strategy to prepare hydrogen-substituted graphdiyne (HsGDY) membranes on commercial alumina tubes. Surface alkynylation initiates an accelerated surface-confined coupling reaction in the presence of a copper catalyst and facilitates the nanoscale epitaxial lateral growth of HsGDY. A continuous and ultra-thin HsGDY membrane (â¼100â nm) can be produced within 15â min. The resulting membranes exhibit outstanding molecular sieving together with excellent water permeances (ca. 1100â L m-2 h-1 MPa-1 ), and show a long-term durability in cross-flow nanofiltration, owing to the superhydrophilic surface and hydrophobic pore walls.
RESUMEN
Bioinspired asymmetric nanofluidic ion channels with ionic diode behavior that can boost the osmotic energy (so-called blue energy) conversion are highly desirable, especially if they can be easily constructed and modified. Two-dimensional (2D) metal carbides and nitrides, known as MXenes, combine hydrophilic surfaces and tunable surface charge properties, providing a shortcut to prepare asymmetric nanofluidic ion channels. Here, we report a mechanically robust, flexible, and scale-up-friendly asymmetric Ti3 C2 Tx MXene-based ionic diode membrane with a highly rectified current and demonstrate its potential use in reverse electrodialysis osmotic energy conversion. Under the salinity gradient of synthetic seawater and river water, our ionic diode membrane-based generator's power density is 8.6â W m-2 and up to 17.8â W m-2 at a 500-fold salinity gradient, outperforming the state-of-the-art membranes. The design of MXene-based ionic diode-type membrane provides a facile and general strategy in developing large-scale 2D nanofluidics and selective ion transport.
Asunto(s)
Salinidad , Titanio , Iones , Ósmosis , AguaRESUMEN
The combination of well-defined molecular cavities and chemical functionality makes crystalline porous solids attractive for a great number of technological applications, from catalysis to gas separation. However, in contrast to other widely applied synthetic solids such as polymers, the lack of processability of crystalline extended solids hampers their application. In this work, we demonstrate that metal-organic frameworks, a type of highly crystalline porous solid, can be made solution processable via outer surface functionalization using N-heterocyclic carbene ligands. Selective outer surface functionalization of relatively large nanoparticles (250 nm) of the well-known zeolitic imidazolate framework ZIF-67 allows for the stabilization of processable dispersions exhibiting permanent porosity. The resulting type III porous liquids can either be directly deployed as liquid adsorbents or be co-processed with state-of-the-art polymers to yield highly loaded mixed matrix membranes with excellent mechanical properties and an outstanding performance in the challenging separation of propylene from propane. We anticipate that this approach can be extended to other metal-organic frameworks and other applications.
RESUMEN
The hydrogenation of sequestrated CO2 to methanol can reduce CO2 emission and establish a sustainable carbon circuit. However, the transformation of CO2 into methanol is challenging because of the thermodynamic equilibrium limitation and the deactivation of catalysts by water. In the present work, different reactor types have been evaluated for CO2 catalytic hydrogenation to methanol. Best results have been obtained in a bifunctional catalytic membrane reactor (CMR) based on a zeolite LTA membrane and a catalytic Cu-ZnO-Al2 O3 -ZrO2 layer on top. Due to the in situ and rapid removal of the produced water from the catalytic layer through the hydrophilic zeolite LTA membrane, it is effective to break the thermodynamic equilibrium limitation, thus significantly increasing the CO2 conversion (36.1 %) and methanol selectivity (100 %). Further, the catalyst deactivation by the produced water can be effectively inhibited, thus maintaining a high long-term activity of the CMR.
RESUMEN
Using oxygen permeable membranes (OPMs) to upgrade low-purity hydrogen is a promising concept for high-purity H2 production. At high temperatures, water dissociates into hydrogen and oxygen. The oxygen permeates through OPM and oxidizes hydrogen in a waste stream on the other side of the membrane. Pure hydrogen can be obtained on the water-splitting side after condensation. However, the existing Co- and Fe-based OPMs are chemically instable as a result of the over-reduction of Co and Fe ions under reducing atmospheres. Herein, a dual-phase membrane Ce0.9 Pr0.1 O2-δ -Pr0.1 Sr0.9 Mg0.1 Ti0.9 O3-δ (CPO-PSM-Ti) with excellent chemical stability and mixed oxygen ionic-electronic conductivity under reducing atmospheres was developed for H2 purification. An acceptable H2 production rate of 0.52â mL min-1 cm-2 is achieved at 940 °C. No obvious degradation during 180â h of operation indicates the robust stability of CPO-PSM-Ti membrane. The proven mixed conductivity and excellent stability of CPO-PSM-Ti give prospective advantages over existing OPMs for upgrading low-purity hydrogen.
RESUMEN
Metal-organic framework membranes are usually prepared by in situ or secondary growth in a solution/hydrogel. The use of organic solvents may cause safety and environmental problems and produce solvent-induced defects. Here, highly oriented and permselective ZIF-95 membranes are prepared for the first time via a solvent-free secondary growth method. The solvent-free growth is not only helpful to control the membrane microstructure and thickness, but also to reduce the intercrystalline defects. In case of solvent-free growth, a perfectly oriented structure leads to an outstanding reduction of intercrystalline defects and transport resistances. For the separation of equimolar binary gas mixtures by using the highly oriented ZIF-95 membrane at 25 °C and 1â bar, the mixture separation factors of H2 /CO2 and H2 /CH4 are 184 and 140, respectively, with H2 permeance of over 1.9×10-7 â mol m-2 s-1 Pa-1 which are much higher than those of the randomly oriented ZIF-95 membrane.
RESUMEN
Metal-organic framework (MOF) membranes have enormous potential in separation applications. There are several MOF membranes grown on polymer substrates aimed for scale-up, but their brittleness hampers any industrial application. Herein, intergrown continuous polypropylene (PP)-supported ZIF-8 membranes have been successfully synthesized via fast current-driven synthesis (FCDS) within 1 h. The PP-supported ZIF-8 membranes exhibit a promising separation factor of 122 ± 13 for binary C3H6-C3H8 mixtures combined with excellent flexibility behavior. The C3H6/C3H8 separation performance of the PP-supported ZIF-8 membrane was found to be constant after bending the supported ZIF-8 film with a curvature of 92 m-1. This outstanding mechanical property is crucial for practical applications. Moreover, we further synthesized ZIF-8 membranes on various polymer substrates and even polymer hollow fibers to demonstrate the production scalability.
RESUMEN
Separation is one of the most energy-intensive processes in the chemical industry, and membrane-based separation technology helps to reduce the energy consumption dramatically. Supported metal-organic framework (MOF) layers hold great promise as a molecular sieve membrane, yet only a few MOF membranes showed the expected separation performance. The main reasons include e.g. nonselective grain boundary transport or the flexible MOF framework, especially the inevitable linker rotation. Here, we propose a crystal engineering strategy that balances the grain boundary structure and framework flexibility in Co-Zn bimetallic zeolitic imidazolate framework (ZIF) membranes and exploit their contributions to the improvement of membrane quality and separation performance. It reveals that a good balance between the two trade-off factors enabled a "sweet spot" that offers the best C3H6/C3H8 separation factor up to 200.
RESUMEN
In this study, we propose a new concept of vertically aligned 2D covalent organic framework (COF) layers forming a membrane for efficient gas separation on the basis of precise size exclusion. Gas transport takes place through the COF interlayer space (typically 0.3-0.4 nm) rather than through the nanometer-sized pore apertures. Construction of such a unique membrane architecture was implemented via in situ oriented growth of 2D COFs inside a skeleton of vertically aligned CoAl-layered double hydroxide (LDH) nanosheets. The resultant vertical COF-LZU1 membrane exhibits a high H2 permeance of â¼3600 GPU together with a desirable separation selectivity for gas mixtures such as H2/CO2 (31.6) and H2/CH4 (29.5), thus surpassing the 2008 Robeson upper bounds. The universality of this approach was demonstrated by successfully producing two types of high-quality vertical COF membranes with superior performance as well as outstanding running stability.
RESUMEN
Control of the microstructure grain orientation, grain boundaries and thickness are crucial for MOF membranes. We report a novel synthesis strategy to prepare highly c-oriented ZIF-95 membranes through vapor-assisted in-plane epitaxial growth. In a mixed DMF/water vapor atmosphere, in-plane epitaxial growth of a ZIF-95 seeds layer was achieved to obtain an oriented and well-intergrown ZIF-95 membrane with a thickness of only 600â nm. Demonstrated by both experimental and simulation studies, the c-oriented ZIF-95 membrane displayed superior separation performance because a perfectly oriented structure resulted in a notable reduction of intercrystalline defects and transport pathways. For the separation of equimolar binary mixtures at 100 °C and 1â bar, the mixture separation factors of H2 /CO2 and H2 /CH4 were 32.2 and 53.7, respectively, with an H2 permeance of over 7.9×10-7 â mol m-2 s-1 Pa-1 , which was 4.6 times higher than that of a randomly oriented ZIF-95 membrane.
RESUMEN
Membrane-based reverse electrodialysis (RED) is considered as the most promising technique to harvest osmotic energy. However, the traditional membranes are limited by high internal resistance and low efficiency, resulting in undesirable power densities. Herein, we report the combination of oppositely charged Ti3 C2 Tx MXene membranes (MXMs) with confined 2D nanofluidic channels as high-performance osmotic power generators. The negatively or positively charged 2D MXene nanochannels exhibit typical surface-charge-governed ion transport and show excellent cation or anion selectivity. By mixing the artificial sea water (0.5 m NaCl) and river water (0.01 m NaCl), we obtain a maximum power density of ca. 4.6â Wm-2 , higher than most of the state-of-the-art membrane-based osmotic power generators, and very close to the commercialization benchmark (5â Wm-2 ). Through connecting ten tandem MXM-RED stacks, the output voltage can reach up 1.66â V, which can directly power the electronic devices.
RESUMEN
The uncontrolled release of antibiotics and pharmaceuticals into the environment is a worldwide increasing problem. Thus, highly efficient treatment technologies for wastewater are urgently needed. In this work, seven kinds of typical antibiotics (including water and alcohol soluble ones) are successfully separated from the corresponding aqueous and ethanolic solutions using highly regular laminated membranes. Our membranes are assembled with 2-4â µm titanium carbide nanosheets. The solvent permeance through such titanium carbide membrane is one order of magnitude higher than that through most polymeric nanofiltration membranes with similar antibiotics rejection. This high flux is due to the regular two-dimensional (2D) structure resulting from the large aspect ratio of titanium carbide nanosheets. Moreover, the electrostatic interaction between the surface terminations and the antibiotics also affects the rejection and enhances the antifouling property. Such 2D titanium carbide membranes further broaden the application scope of laminated materials for separation and purification of high value added drugs in academia and industry.
Asunto(s)
Antibacterianos/química , Antibacterianos/aislamiento & purificación , Membranas Artificiales , Nanoestructuras/química , Nanotecnología/métodos , Polímeros/química , Factores de Tiempo , Titanio/químicaRESUMEN
Graphene/MOF-based composite materials in three-dimensional (3D) architectures are promising for the treatment of oil-containing wastewater by absorption owing to their intrinsic properties of graphene and metal-organic frameworks (MOFs), such as high porosity, ultralow density, and facilely tailored superwettability. In this study, novel wrinkled 3D microspherical MOF@rGO composites with both superhydrophobic and superoleophilic properties were developed by embedding MOF nanoparticles between graphene oxide (GO) nanosheets, followed by high-temperature reduction self-assembly. The microspherical composites feature a unique micro/nano hierarchy consisting of crumpled reduced GO (rGO) nanosheets intercalated with well-dispersed MOF nanoparticles. Combined with the superwettability and abundant meso/microporosity, the peculiar architectures of wrinkled ZIF-8@rGO microspheres show very fast absorption rates and high sorption selectivity for organic solvents and oils from water.
RESUMEN
Oriented and penetrating molecular sieving membranes display enhanced separation performance. A polyimide (PI) solution containing highly dispersed ZIF-7(III) sheets in CHCl3 was deposited on a glass side and subjected to flat-scraping with a membrane fabricator. In this way we developed a novel oriented and penetrating ZIF-7@PI mixed matrix membrane (MMM) with 50â wt. % ZIF-7 loading. Because the height of the ZIF-7 sheets (5â µm) is higher than the film thickness, every ZIF-7 sheet penetrates both surfaces of the polyimide film. Since the ZIF-7 channels are the dominant pathway for gas permeation, the ZIF-7@PI MMM displays a high molecular sieve performance for the separation of H2 (0.29â nm) from larger gas molecules. At 100 °C and 2â bar, the mixture separation factors of H2 /CO2 and H2 /CH4 are 91.5 and 128.4, with a high H2 permeance of about 3.0×10-7 â mol m-2 s-1 Pa-1 , which is promising for hydrogen separation by molecular sieving.