Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
R Soc Open Sci ; 11(2): 231462, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38420629

RESUMEN

For the 40 years after the end of commercial whaling in 1976, humpback whale populations in the North Pacific Ocean exhibited a prolonged period of recovery. Using mark-recapture methods on the largest individual photo-identification dataset ever assembled for a cetacean, we estimated annual ocean-basin-wide abundance for the species from 2002 through 2021. Trends in annual estimates describe strong post-whaling era population recovery from 16 875 (± 5955) in 2002 to a peak abundance estimate of 33 488 (± 4455) in 2012. An apparent 20% decline from 2012 to 2021, 33 488 (± 4455) to 26 662 (± 4192), suggests the population abruptly reached carrying capacity due to loss of prey resources. This was particularly evident for humpback whales wintering in Hawai'i, where, by 2021, estimated abundance had declined by 34% from a peak in 2013, down to abundance levels previously seen in 2006, and contrasted to an absence of decline in Mainland Mexico breeding humpbacks. The strongest marine heatwave recorded globally to date during the 2014-2016 period appeared to have altered the course of species recovery, with enduring effects. Extending this time series will allow humpback whales to serve as an indicator species for the ecosystem in the face of a changing climate.

2.
PLoS One ; 18(8): e0284834, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37643191

RESUMEN

Cetacea and other diving mammals have undergone numerous adaptations to their aquatic environment, among them high levels of the oxygen-carrying intracellular hemoprotein myoglobin in skeletal muscles. Hypotheses regarding the mechanisms leading to these high myoglobin levels often invoke the induction of gene expression by exercise, hypoxia, and other physiological gene regulatory pathways. Here we explore an alternative hypothesis: that cetacean myoglobin genes have evolved high levels of transcription driven by the intrinsic developmental mechanisms that drive muscle cell differentiation. We have used luciferase assays in differentiated C2C12 cells to test this hypothesis. Contrary to our hypothesis, we find that the myoglobin gene from the minke whale, Balaenoptera acutorostrata, shows a low level of expression, only about 8% that of humans. This low expression level is broadly shared among cetaceans and artiodactylans. Previous work on regulation of the human gene has identified a core muscle-specific enhancer comprised of two regions, the "AT element" and a C-rich sequence 5' of the AT element termed the "CCAC-box". Analysis of the minke whale gene supports the importance of the AT element, but the minke whale CCAC-box ortholog has little effect. Instead, critical positive input has been identified in a G-rich region 3' of the AT element. Also, a conserved E-box in exon 1 positively affects expression, despite having been assigned a repressive role in the human gene. Last, a novel region 5' of the core enhancer has been identified, which we hypothesize may function as a boundary element. These results illustrate regulatory flexibility during evolution. We discuss the possibility that low transcription levels are actually beneficial, and that evolution of the myoglobin protein toward enhanced stability is a critical factor in the accumulation of high myoglobin levels in adult cetacean muscle tissue.


Asunto(s)
Ballena Minke , Mioglobina , Animales , Humanos , Músculo Esquelético , Mioglobina/genética , Secuencias Reguladoras de Ácidos Nucleicos , Evolución Molecular
3.
Sci Rep ; 13(1): 10237, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353581

RESUMEN

We present an ocean-basin-scale dataset that includes tail fluke photographic identification (photo-ID) and encounter data for most living individual humpback whales (Megaptera novaeangliae) in the North Pacific Ocean. The dataset was built through a broad collaboration combining 39 separate curated photo-ID catalogs, supplemented with community science data. Data from throughout the North Pacific were aggregated into 13 regions, including six breeding regions, six feeding regions, and one migratory corridor. All images were compared with minimal pre-processing using a recently developed image recognition algorithm based on machine learning through artificial intelligence; this system is capable of rapidly detecting matches between individuals with an estimated 97-99% accuracy. For the 2001-2021 study period, a total of 27,956 unique individuals were documented in 157,350 encounters. Each individual was encountered, on average, in 5.6 sampling periods (i.e., breeding and feeding seasons), with an annual average of 87% of whales encountered in more than one season. The combined dataset and image recognition tool represents a living and accessible resource for collaborative, basin-wide studies of a keystone marine mammal in a time of rapid ecological change.


Asunto(s)
Yubarta , Animales , Inteligencia Artificial , Océano Pacífico , Estaciones del Año
4.
J Bone Miner Res ; 35(5): 942-955, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31886918

RESUMEN

Multiple myeloma is caused by abnormal plasma cells that accumulate in the bone marrow and interact with resident cells of the bone microenvironment to drive disease progression and development of an osteolytic bone disease. Bone marrow adipocytes (BMAds) are emerging as having important endocrine functions that can support myeloma cell growth and survival. However, how BMAds respond to infiltrating tumor cells remains poorly understood. Using the C57BL/KaLwRij murine model of myeloma, bone marrow adiposity was found to be increased in early stage myeloma with BMAds localizing along the tumor-bone interface at later stages of disease. Myeloma cells were found to uptake BMAd-derived lipids in vitro and in vivo, although lipid uptake was not associated with the ability of BMAds to promote myeloma cell growth and survival. However, BMAd-derived factors were found to increase myeloma cell migration, viability, and the evasion of apoptosis. BMAds are a major source of adiponectin, which is known to be myeloma-suppressive. Myeloma cells were found to downregulate adiponectin specifically in a model of BMAds but not in white adipocytes. The ability of myeloma cells to downregulate adiponectin was dependent at least in part on TNF-α. Collectively our data support the link between increased bone marrow adiposity and myeloma progression. By demonstrating how TNF-α downregulates BMAd-derived adiponectin, we reveal a new mechanism by which myeloma cells alter the bone microenvironment to support disease progression. © 2019 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.


Asunto(s)
Neoplasias Óseas , Mieloma Múltiple , Adipocitos , Adiponectina , Animales , Médula Ósea , Células de la Médula Ósea , Ratones , Microambiente Tumoral , Factor de Necrosis Tumoral alfa
5.
PLoS One ; 11(1): e0145893, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26788728

RESUMEN

For marine mammals, the ability to tolerate apnea and make extended dives is a defining adaptive trait, facilitating the exploitation of marine food resources. Elevated levels of myoglobin within the muscles are a consistent hallmark of this trait, allowing oxygen collected at the surface to be stored in the muscles and subsequently used to support extended dives. In mysticetes, the largest of marine predators, details on muscular myoglobin levels are limited. The developmental trajectory of muscular myoglobin stores has yet to be documented and any physiological links between early behavior and the development of muscular myoglobin stores remain unknown. In this study, we used muscle tissue samples from stranded mysticetes to investigate these issues. Samples from three different age cohorts and three species of mysticetes were included (total sample size = 18). Results indicate that in mysticete calves, muscle myoglobin stores comprise only a small percentage (17-23%) of conspecific adult myoglobin complements. Development of elevated myoglobin levels is protracted over the course of extended maturation in mysticetes. Additionally, comparisons of myoglobin levels between and within muscles, along with details of interspecific differences in rates of accumulation of myoglobin in very young mysticetes, suggest that levels of exercise may influence the rate of development of myoglobin stores in young mysticetes. This new information infers a close interplay between the physiology, ontogeny and early life history of young mysticetes and provides new insight into the pressures that may shape adaptive strategies in migratory mysticetes. Furthermore, the study highlights the vulnerability of specific age cohorts to impending changes in the availability of foraging habitat and marine resources.


Asunto(s)
Músculo Esquelético/crecimiento & desarrollo , Mioglobina/metabolismo , Ballenas/crecimiento & desarrollo , Animales , Buceo/fisiología , Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Ballenas/metabolismo
6.
PLoS One ; 7(5): e38004, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22666432

RESUMEN

The Au'au Channel between the islands of Maui and Lanai, Hawaii comprises critical breeding habitat for humpback whales (Megaptera novaeangliae) of the Central North Pacific stock. However, like many regions where marine mega-fauna gather, these waters are also the focus of a flourishing local eco-tourism and whale watching industry. Our aim was to establish current trends in habitat preference in female-calf humpback whale pairs within this region, focusing specifically on the busy, eastern portions of the channel. We used an equally-spaced zigzag transect survey design, compiled our results in a GIS model to identify spatial trends and calculated Neu's Indices to quantify levels of habitat use. Our study revealed that while mysticete female-calf pairs on breeding grounds typically favor shallow, inshore waters, female-calf pairs in the Au'au Channel avoided shallow waters (<20 m) and regions within 2 km of the shoreline. Preferred regions for female-calf pairs comprised water depths between 40-60 m, regions of rugged bottom topography and regions that lay between 4 and 6 km from a small boat harbor (Lahaina Harbor) that fell within the study area. In contrast to other humpback whale breeding grounds, there was only minimal evidence of typical patterns of stratification or segregation according to group composition. A review of habitat use by maternal females across Hawaiian waters indicates that maternal habitat choice varies between localities within the Hawaiian Islands, suggesting that maternal females alter their use of habitat according to locally varying pressures. This ability to respond to varying environments may be the key that allows wildlife species to persist in regions where human activity and critical habitat overlap.


Asunto(s)
Conducta Animal , Cruzamiento , Ecosistema , Yubarta , Animales , Femenino , Hawaii , Relaciones Interpersonales , Madres , Navíos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA