Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 592(7852): 86-92, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33473216

RESUMEN

The anatomy of the mammalian visual system, from the retina to the neocortex, is organized hierarchically1. However, direct observation of cellular-level functional interactions across this hierarchy is lacking due to the challenge of simultaneously recording activity across numerous regions. Here we describe a large, open dataset-part of the Allen Brain Observatory2-that surveys spiking from tens of thousands of units in six cortical and two thalamic regions in the brains of mice responding to a battery of visual stimuli. Using cross-correlation analysis, we reveal that the organization of inter-area functional connectivity during visual stimulation mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas3. We find that four classical hierarchical measures-response latency, receptive-field size, phase-locking to drifting gratings and response decay timescale-are all correlated with the hierarchy. Moreover, recordings obtained during a visual task reveal that the correlation between neural activity and behavioural choice also increases along the hierarchy. Our study provides a foundation for understanding coding and signal propagation across hierarchically organized cortical and thalamic visual areas.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Visual/anatomía & histología , Corteza Visual/fisiología , Animales , Conjuntos de Datos como Asunto , Electrofisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Estimulación Luminosa , Tálamo/anatomía & histología , Tálamo/citología , Tálamo/fisiología , Corteza Visual/citología
2.
Nature ; 575(7781): 195-202, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31666704

RESUMEN

The mammalian cortex is a laminar structure containing many areas and cell types that are densely interconnected in complex ways, and for which generalizable principles of organization remain mostly unknown. Here we describe a major expansion of the Allen Mouse Brain Connectivity Atlas resource1, involving around a thousand new tracer experiments in the cortex and its main satellite structure, the thalamus. We used Cre driver lines (mice expressing Cre recombinase) to comprehensively and selectively label brain-wide connections by layer and class of projection neuron. Through observations of axon termination patterns, we have derived a set of generalized anatomical rules to describe corticocortical, thalamocortical and corticothalamic projections. We have built a model to assign connection patterns between areas as either feedforward or feedback, and generated testable predictions of hierarchical positions for individual cortical and thalamic areas and for cortical network modules. Our results show that cell-class-specific connections are organized in a shallow hierarchy within the mouse corticothalamic network.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/citología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/citología , Tálamo/anatomía & histología , Tálamo/citología , Animales , Axones/fisiología , Corteza Cerebral/fisiología , Femenino , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Tálamo/fisiología
3.
bioRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333203

RESUMEN

The classic view that neural populations in sensory cortices preferentially encode responses to incoming stimuli has been strongly challenged by recent experimental studies. Despite the fact that a large fraction of variance of visual responses in rodents can be attributed to behavioral state and movements, trial-history, and salience, the effects of contextual modulations and expectations on sensory-evoked responses in visual and association areas remain elusive. Here, we present a comprehensive experimental and theoretical study showing that hierarchically connected visual and association areas differentially encode the temporal context and expectation of naturalistic visual stimuli, consistent with the theory of hierarchical predictive coding. We measured neural responses to expected and unexpected sequences of natural scenes in the primary visual cortex (V1), the posterior medial higher order visual area (PM), and retrosplenial cortex (RSP) using 2-photon imaging in behaving mice collected through the Allen Institute Mindscope's OpenScope program. We found that information about image identity in neural population activity depended on the temporal context of transitions preceding each scene, and decreased along the hierarchy. Furthermore, our analyses revealed that the conjunctive encoding of temporal context and image identity was modulated by expectations of sequential events. In V1 and PM, we found enhanced and specific responses to unexpected oddball images, signaling stimulus-specific expectation violation. In contrast, in RSP the population response to oddball presentation recapitulated the missing expected image rather than the oddball image. These differential responses along the hierarchy are consistent with classic theories of hierarchical predictive coding whereby higher areas encode predictions and lower areas encode deviations from expectation. We further found evidence for drift in visual responses on the timescale of minutes. Although activity drift was present in all areas, population responses in V1 and PM, but not in RSP, maintained stable encoding of visual information and representational geometry. Instead we found that RSP drift was independent of stimulus information, suggesting a role in generating an internal model of the environment in the temporal domain. Overall, our results establish temporal context and expectation as substantial encoding dimensions in the visual cortex subject to fast representational drift and suggest that hierarchically connected areas instantiate a predictive coding mechanism.

4.
Nat Neurosci ; 26(2): 350-364, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36550293

RESUMEN

Identification of structural connections between neurons is a prerequisite to understanding brain function. Here we developed a pipeline to systematically map brain-wide monosynaptic input connections to genetically defined neuronal populations using an optimized rabies tracing system. We used mouse visual cortex as the exemplar system and revealed quantitative target-specific, layer-specific and cell-class-specific differences in its presynaptic connectomes. The retrograde connectivity indicates the presence of ventral and dorsal visual streams and further reveals topographically organized and continuously varying subnetworks mediated by different higher visual areas. The visual cortex hierarchy can be derived from intracortical feedforward and feedback pathways mediated by upper-layer and lower-layer input neurons. We also identify a new role for layer 6 neurons in mediating reciprocal interhemispheric connections. This study expands our knowledge of the visual system connectomes and demonstrates that the pipeline can be scaled up to dissect connectivity of different cell populations across the mouse brain.


Asunto(s)
Conectoma , Corteza Visual , Ratones , Animales , Neuronas/fisiología , Encéfalo/fisiología , Corteza Visual/fisiología , Vías Visuales
5.
Elife ; 102021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34270411

RESUMEN

Extracellular electrophysiology and two-photon calcium imaging are widely used methods for measuring physiological activity with single-cell resolution across large populations of cortical neurons. While each of these two modalities has distinct advantages and disadvantages, neither provides complete, unbiased information about the underlying neural population. Here, we compare evoked responses in visual cortex recorded in awake mice under highly standardized conditions using either imaging of genetically expressed GCaMP6f or electrophysiology with silicon probes. Across all stimulus conditions tested, we observe a larger fraction of responsive neurons in electrophysiology and higher stimulus selectivity in calcium imaging, which was partially reconciled by applying a spikes-to-calcium forward model to the electrophysiology data. However, the forward model could only reconcile differences in responsiveness when restricted to neurons with low contamination and an event rate above a minimum threshold. This work established how the biases of these two modalities impact functional metrics that are fundamental for characterizing sensory-evoked responses.


Asunto(s)
Electrofisiología/métodos , Neuronas/fisiología , Animales , Calcio , Señalización del Calcio , Genotipo , Ratones , Ratones Transgénicos , Neuronas/citología , Corteza Visual/citología , Corteza Visual/fisiología
6.
Front Behav Neurosci ; 14: 104, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655383

RESUMEN

To study the mechanisms of perception and cognition, neural measurements must be made during behavior. A goal of the Allen Brain Observatory is to map the activity of distinct cortical cell classes underlying visual and behavioral processing. Here we describe standardized methodology for training head-fixed mice on a visual change detection task, and we use our paradigm to characterize learning and behavior of five GCaMP6-expressing transgenic lines. We used automated training procedures to facilitate comparisons across mice. Training times varied, but most transgenic mice learned the behavioral task. Motivation levels also varied across mice. To compare mice in similar motivational states we subdivided sessions into over-, under-, and optimally motivated periods. When motivated, the pattern of perceptual decisions were highly correlated across transgenic lines, although overall performance (d-prime) was lower in one line labeling somatostatin inhibitory cells. These results provide important context for using these mice to map neural activity underlying perception and behavior.

7.
Elife ; 92020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32101169

RESUMEN

Cortical circuits can flexibly change with experience and learning, but the effects on specific cell types, including distinct inhibitory types, are not well understood. Here we investigated how excitatory and VIP inhibitory cells in layer 2/3 of mouse visual cortex were impacted by visual experience in the context of a behavioral task. Mice learned a visual change detection task with a set of eight natural scene images. Subsequently, during 2-photon imaging experiments, mice performed the task with these familiar images and three sets of novel images. Strikingly, the temporal dynamics of VIP activity differed markedly between novel and familiar images: VIP cells were stimulus-driven by novel images but were suppressed by familiar stimuli and showed ramping activity when expected stimuli were omitted from a temporally predictable sequence. This prominent change in VIP activity suggests that these cells may adopt different modes of processing under novel versus familiar conditions.


Asunto(s)
Péptido Intestinal Vasoactivo/metabolismo , Animales , Ratones , Análisis y Desempeño de Tareas , Corteza Visual/metabolismo , Corteza Visual/fisiología
8.
Nat Neurosci ; 23(1): 138-151, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31844315

RESUMEN

To understand how the brain processes sensory information to guide behavior, we must know how stimulus representations are transformed throughout the visual cortex. Here we report an open, large-scale physiological survey of activity in the awake mouse visual cortex: the Allen Brain Observatory Visual Coding dataset. This publicly available dataset includes the cortical activity of nearly 60,000 neurons from six visual areas, four layers, and 12 transgenic mouse lines in a total of 243 adult mice, in response to a systematic set of visual stimuli. We classify neurons on the basis of joint reliabilities to multiple stimuli and validate this functional classification with models of visual responses. While most classes are characterized by responses to specific subsets of the stimuli, the largest class is not reliably responsive to any of the stimuli and becomes progressively larger in higher visual areas. These classes reveal a functional organization wherein putative dorsal areas show specialization for visual motion signals.


Asunto(s)
Corteza Visual/anatomía & histología , Corteza Visual/fisiología , Animales , Conjuntos de Datos como Asunto , Ratones
9.
Psychopharmacology (Berl) ; 235(4): 1179-1189, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29423710

RESUMEN

RATIONALE: Initial sensitivity to drugs of abuse often predicts subsequent use and abuse, but this relationship is not always observed in human studies. Moreover, studies examining the relationship between initial locomotor sensitivity and the rewarding and reinforcing effects of drugs in animal models have also been equivocal. Understanding the relationship between initial drug effects and propensity to continue use, potentially resulting in the development of a substance use disorder, may help to identify key targets for prevention and treatment. OBJECTIVES: We examined intravenous cocaine self-administration in a set of mouse strains that were previously identified to be at the phenotypic extremes for cocaine-induced locomotor activation to determine if initial locomotor sensitivity predicted acquisition, extinction, dose response, or progressive ratio (PR) breakpoint. METHODS: We selected eight inbred mouse strains based on locomotor sensitivity to 20 mg/kg cocaine. These strains, designated as low and high responders, were tested in an intravenous self-administration paradigm that included acquisition of 0.5 mg/(kg*inf) under a FR1 schedule, extinction, re-acquisition, dose response to 0.125, 0.25, 0.5, 1, and 2 mg/(kg*inf), and progressive ratio. RESULTS: We observed overall differences in self-administration behavior between high and low responders. Low responders self-administered less cocaine and had lower breakpoints under the PR schedule. However, we also observed strain differences within each group. Self-administration in the low responder, LG/J, more closely resembled the behavior of the high-responding group, and the high responder, P/J, had self-administration behavior that more closely resembled the low-responding group. CONCLUSIONS: We conclude that acute cocaine-induced locomotor activation does predict self-administration behavior, but in a strain-specific manner. These data support the idea that genetic background influences the relationship among addiction-related behaviors.


Asunto(s)
Cocaína/farmacología , Comportamiento de Búsqueda de Drogas , Locomoción/efectos de los fármacos , Animales , Cocaína/administración & dosificación , Trastornos Relacionados con Cocaína , Relación Dosis-Respuesta a Droga , Infusiones Intravenosas , Masculino , Ratones , Ratones Endogámicos , Refuerzo en Psicología , Recompensa , Autoadministración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA