Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 80(12): 367, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37987826

RESUMEN

BACKGROUND: Huntington's Disease (HD) is a disorder that affects body movements. Altered glutamatergic innervation of the striatum is a major hallmark of the disease. Approximately 30% of those glutamatergic inputs come from thalamic nuclei. Foxp2 is a transcription factor involved in cell differentiation and reported low in patients with HD. However, the role of the Foxp2 in the thalamus in HD remains unexplored. METHODS: We used two different mouse models of HD, the R6/1 and the HdhQ111 mice, to demonstrate a consistent thalamic Foxp2 reduction in the context of HD. We used in vivo electrophysiological recordings, microdialysis in behaving mice and rabies virus-based monosynaptic tracing to study thalamo-striatal and thalamo-cortical synaptic connectivity in R6/1 mice. Micro-structural synaptic plasticity was also evaluated in the striatum and cortex of R6/1 mice. We over-expressed Foxp2 in the thalamus of R6/1 mice or reduced Foxp2 in the thalamus of wild type mice to evaluate its role in sensory and motor skills deficiencies, as well as thalamo-striatal and thalamo-cortical connectivity in such mouse models. RESULTS: Here, we demonstrate in a HD mouse model a clear and early thalamo-striatal aberrant connectivity associated with a reduction of thalamic Foxp2 levels. Recovering thalamic Foxp2 levels in the mouse rescued motor coordination and sensory skills concomitant with an amelioration of neuropathological features and with a repair of the structural and functional connectivity through a restoration of neurotransmitter release. In addition, reduction of thalamic Foxp2 levels in wild type mice induced HD-like phenotypes. CONCLUSIONS: In conclusion, we show that a novel identified thalamic Foxp2 dysregulation alters basal ganglia circuits implicated in the pathophysiology of HD.


Asunto(s)
Enfermedad de Huntington , Trastornos Motores , Humanos , Animales , Ratones , Tálamo , Cuerpo Estriado , Movimiento , Modelos Animales de Enfermedad , Proteínas Represoras , Factores de Transcripción Forkhead/genética
2.
J Neurosci ; 42(41): 7757-7781, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36096667

RESUMEN

All pathways targeting the thalamus terminate directly onto the thalamic projection cells. As these cells lack local excitatory interconnections, their computations are fundamentally defined by the type and local convergence patterns of the extrinsic inputs. These two key variables, however, remain poorly defined for the "higher-order relay" (HO) nuclei that constitute most of the thalamus in large-brained mammals, including humans. Here, we systematically analyzed the input landscape of a representative HO nucleus of the mouse thalamus, the posterior nucleus (Po). We examined in adult male and female mice the neuropil distribution of terminals immunopositive for markers of excitatory or inhibitory neurotransmission, mapped input sources across the brain and spinal cord and compared the intranuclear distribution and varicosity size of axons originated from each input source. Our findings reveal a complex landscape of partly overlapping input-specific microdomains. Cortical layer (L)5 afferents from somatosensory and motor areas predominate in central and ventral Po but are relatively less abundant in dorsal and lateral portions of the nucleus. Excitatory inputs from the trigeminal complex, dorsal column nuclei (DCN), spinal cord and superior colliculus as well as inhibitory terminals from anterior pretectal nucleus and zona incerta (ZI) are each abundant in specific Po regions and absent from others. Cortical L6 and reticular thalamic nucleus terminals are evenly distributed across Po. Integration of specific input motifs by particular cell subpopulations may be commonplace within HO nuclei and favor the emergence of multiple, functionally diverse input-output subnetworks.SIGNIFICANCE STATEMENT Because thalamic projection neurons lack local interconnections, their output is essentially determined by the kind and convergence of the long-range inputs that they receive. Fragmentary evidence suggests that these parameters may vary within the "higher-order relay" (HO) nuclei that constitute much of the thalamus, but such variation has not been systematically analyzed. Here, we mapped the origin and local convergence of all the extrinsic inputs reaching the posterior nucleus (Po), a typical HO nucleus of the mouse thalamus by combining multiple neuropil labeling and axon tracing methods. We report a complex mosaic of partly overlapping input-specific domains within Po. Integration of different input motifs by specific cell subpopulations in HO nuclei may favor the emergence of multiple, computationally specialized thalamocortical subnetworks.


Asunto(s)
Núcleos Talámicos Posteriores , Tálamo , Humanos , Masculino , Femenino , Ratones , Animales , Vías Nerviosas/fisiología , Tálamo/fisiología , Núcleos Talámicos/fisiología , Colículos Superiores , Mamíferos
3.
J Neurosci ; 40(13): 2663-2679, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32054677

RESUMEN

Thalamocortical posterior nucleus (Po) axons innervating the vibrissal somatosensory (S1) and motor (MC) cortices are key links in the brain neuronal network that allows rodents to explore the environment whisking with their motile snout vibrissae. Here, using fine-scale high-end 3D electron microscopy, we demonstrate in adult male C57BL/6 wild-type mice marked differences between MC versus S1 Po synapses in (1) bouton and active zone size, (2) neurotransmitter vesicle pool size, (3) distribution of mitochondria around synapses, and (4) proportion of synapses established on dendritic spines and dendritic shafts. These differences are as large, or even more pronounced, than those between Po and ventro-posterior thalamic nucleus synapses in S1. Moreover, using single-axon transfection labeling, we demonstrate that the above differences actually occur on the MC versus the S1 branches of individual Po cell axons that innervate both areas. Along with recently-discovered divergences in efficacy and plasticity, the synaptic structure differences reported here thus reveal a new subcellular level of complexity. This is a finding that upends current models of thalamocortical circuitry, and that might as well illuminate the functional logic of other branched projection axon systems.SIGNIFICANCE STATEMENT Many long-distance brain connections depend on neurons whose branched axons target separate regions. Using 3D electron microscopy and single-cell transfection, we investigated the mouse Posterior thalamic nucleus (Po) cell axons that simultaneously innervate motor and sensory areas of the cerebral cortex involved in whisker movement control. We demonstrate significant differences in the size of the boutons made in each area by individual Po axons, as well as in functionally-relevant parameters in the composition of their synapses. In addition, we found similarly large differences between the synapses of Po versus ventral posteromedial thalamic nucleus axons in the whisker sensory cortex. Area-specific synapse structure in individual axons implies a new, unsuspected level of complexity in long-distance brain connections.


Asunto(s)
Axones/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Vibrisas/fisiología
4.
Cereb Cortex ; 28(5): 1882-1897, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29481606

RESUMEN

The thalamus receives input from 3 distinct cortical layers, but input from only 2 of these has been well characterized. We therefore investigated whether the third input, derived from layer 6b, is more similar to the projections from layer 6a or layer 5. We studied the projections of a restricted population of deep layer 6 cells ("layer 6b cells") taking advantage of the transgenic mouse Tg(Drd1a-cre)FK164Gsat/Mmucd (Drd1a-Cre), that selectively expresses Cre-recombinase in a subpopulation of layer 6b neurons across the entire cortical mantle. At P8, 18% of layer 6b neurons are labeled with Drd1a-Cre::tdTomato in somatosensory cortex (SS), and some co-express known layer 6b markers. Using Cre-dependent viral tracing, we identified topographical projections to higher order thalamic nuclei. VGluT1+ synapses formed by labeled layer 6b projections were found in posterior thalamic nucleus (Po) but not in the (pre)thalamic reticular nucleus (TRN). The lack of TRN collaterals was confirmed with single-cell tracing from SS. Transmission electron microscopy comparison of terminal varicosities from layer 5 and layer 6b axons in Po showed that L6b varicosities are markedly smaller and simpler than the majority from L5. Our results suggest that L6b projections to the thalamus are distinct from both L5 and L6a projections.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral/citología , Neuronas/fisiología , Núcleos Talámicos/citología , Proteínas Adaptadoras Transductoras de Señales , Animales , Animales Recién Nacidos , Biotina/análogos & derivados , Biotina/metabolismo , Corteza Cerebral/ultraestructura , Dextranos/metabolismo , Embrión de Mamíferos , Proteínas del Ojo/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica , Mutación/genética , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/clasificación , Neuronas/ultraestructura , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura , Núcleos Talámicos/fisiología , Núcleos Talámicos/ultraestructura , Transducción Genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
5.
Front Neuroanat ; 17: 1242839, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645018

RESUMEN

The thalamus is a central link between cortical and subcortical brain motor systems. Axons from the deep nuclei of the cerebellum (DCN), or the output nuclei of the basal ganglia system (substantia nigra reticulata, SNr; and internal pallidum GPi/ENT) monosynaptically innervate the thalamus, prominently some nuclei of the ventral nuclear group. In turn, axons from these ventral nuclei innervate the motor and premotor areas of the cortex, where their input is critical for planning, execution and learning of rapid and precise movements. Mice have in recent years become a widely used model in motor system research. However, information on the distribution of cerebellar and basal ganglia inputs in the rodent thalamus remains poorly defined. Here, we mapped the distribution of inputs from DCN, SNr, and GPi/ENT to the ventral nuclei of the mouse thalamus. Immunolabeling for glutamatergic and GABAergic neurotransmission markers delineated two distinct main territories, characterized each by the presence of large vesicular glutamate transporter type 2 (vGLUT2) puncta or vesicular GABA transporter (vGAT) puncta. Anterograde labeling of axons from DCN revealed that they reach virtually all parts of the ventral nuclei, albeit its axonal varicosities (putative boutons) in the vGAT-rich sector are consistently smaller than those in the vGLUT2-rich sector. In contrast, the SNr axons innervate the whole vGAT-rich sector, but not the vGLUT2-rich sector. The GPi/ENT axons were found to innervate only a small zone of the vGAT-rich sector which is also targeted by the other two input systems. Because inputs fundamentally define thalamic cell functioning, we propose a new delineation of the mouse ventral motor nuclei that is consistent with the distribution of DCN, SNr and GPi/ENT inputs and resembles the general layout of the ventral motor nuclei in primates.

6.
7.
Brain Struct Funct ; 224(4): 1627-1645, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30919051

RESUMEN

Rodents extract information about nearby objects from the movement of their whiskers through dynamic computations that are carried out by a network of forebrain structures that includes the thalamus and the primary sensory (S1BF) and motor (M1wk) whisker cortices. The posterior nucleus (Po), a higher order thalamic nucleus, is a key hub of this network, receiving cortical and brainstem sensory inputs and innervating both motor and sensory whisker-related cortical areas. In a recent study in rats, we showed that Po inputs differently impact sensory processing in S1BF and M1wk. Here, in C57BL/6 mice, we measured Po synaptic bouton layer distribution and size, compared cortical unit response latencies to "in vivo" Po activation, and pharmacologically examined the glutamatergic receptor mechanisms involved. We found that, in S1BF, a large majority (56%) of Po axon varicosities are located in layer (L)5a and only 12% in L2-L4, whereas in M1wk this proportion is inverted to 18% and 55%, respectively. Light and electron microscopic measurements showed that Po synaptic boutons in M1wk layers 3-4 are significantly larger (~ 50%) than those in S1BF L5a. Electrical Po stimulation elicits different area-specific response patterns. In S1BF, responses show weak or no facilitation, and involve both ionotropic and metabotropic glutamate receptors, whereas in M1wk, unit responses exhibit facilitation to repetitive stimulation and involve ionotropic NMDA glutamate receptors. Because of the different laminar distribution of axon terminals, synaptic bouton size and receptor mechanisms, the impact of Po signals on M1wk and S1BF, although simultaneous, is likely to be markedly different.


Asunto(s)
Axones/fisiología , Axones/ultraestructura , Corteza Motora/fisiología , Núcleos Talámicos Posteriores/fisiología , Corteza Somatosensorial/fisiología , Sinapsis/fisiología , Sinapsis/ultraestructura , Animales , Estimulación Eléctrica , Masculino , Ratones Endogámicos C57BL , Corteza Motora/ultraestructura , Vías Nerviosas/fisiología , Vías Nerviosas/ultraestructura , Núcleos Talámicos Posteriores/ultraestructura , Receptores de Glutamato Metabotrópico/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Corteza Somatosensorial/ultraestructura , Vibrisas/fisiología
8.
Front Neural Circuits ; 11: 69, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29021744

RESUMEN

Rodents move rhythmically their facial whiskers and compute differences between signals predicted and those resulting from the movement to infer information about objects near their head. These computations are carried out by a large network of forebrain structures that includes the thalamus and the primary somatosensory (S1BF) and motor (M1wk) cortices. Spatially and temporally precise mechanorreceptive whisker information reaches the S1BF cortex via the ventroposterior medial thalamic nucleus (VPM). Other whisker-related information may reach both M1wk and S1BF via the axons from the posterior thalamic nucleus (Po). However, Po axons may convey, in addition to direct sensory signals, the dynamic output of computations between whisker signals and descending motor commands. It has been proposed that this input may be relevant for adjusting cortical responses to predicted vs. unpredicted whisker signals, but the effects of Po input on M1wk and S1BF function have not been directly tested or compared in vivo. Here, using electrophysiology, optogenetics and pharmacological tools, we compared in adult rats M1wk and S1BF in vivo responses in the whisker areas of the motor and primary somatosensory cortices to passive multi-whisker deflection, their dependence on Po activity, and their changes after a brief intense activation of Po axons. We report that the latencies of the first component of tactile-evoked local field potentials in M1wk and S1BF are similar. The evoked potentials decrease markedly in M1wk, but not in S1BF, by injection in Po of the GABAA agonist muscimol. A brief high-frequency electrical stimulation of Po decreases the responsivity of M1wk and S1BF cells to subsequent whisker stimulation. This effect is prevented by the local application of omega-agatoxin, suggesting that it may in part depend on GABA release by fast-spiking parvalbumin (PV)-expressing cortical interneurons. Local optogenetic activation of Po synapses in different cortical layers also diminishes M1wk and S1BF responses. This effect is most pronounced in the superficial layers of both areas, known to be the main source and target of their reciprocal cortico-cortical connections.


Asunto(s)
Corteza Motora/fisiología , Núcleos Talámicos Posteriores/fisiología , Corteza Somatosensorial/fisiología , Percepción del Tacto/fisiología , Animales , Femenino , Masculino , Microelectrodos , Corteza Motora/citología , Corteza Motora/efectos de los fármacos , Vías Nerviosas/citología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Optogenética , Estimulación Física , Núcleos Talámicos Posteriores/citología , Núcleos Talámicos Posteriores/efectos de los fármacos , Ratas Sprague-Dawley , Receptores de GABA-A/metabolismo , Corteza Somatosensorial/citología , Corteza Somatosensorial/efectos de los fármacos , Percepción del Tacto/efectos de los fármacos , Vibrisas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA