Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Biol ; 18(4): e3000665, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32275651

RESUMEN

The correct subcellular distribution of proteins establishes the complex morphology and function of neurons. Fluorescence microscopy techniques are invaluable to investigate subcellular protein distribution, but they suffer from the limited ability to efficiently and reliably label endogenous proteins with fluorescent probes. We developed ORANGE: Open Resource for the Application of Neuronal Genome Editing, which mediates targeted genomic integration of epitope tags in rodent dissociated neuronal culture, in organotypic slices, and in vivo. ORANGE includes a knock-in library for in-depth investigation of endogenous protein distribution, viral vectors, and a detailed two-step cloning protocol to develop knock-ins for novel targets. Using ORANGE with (live-cell) superresolution microscopy, we revealed the dynamic nanoscale organization of endogenous neurotransmitter receptors and synaptic scaffolding proteins, as well as previously uncharacterized proteins. Finally, we developed a mechanism to create multiple knock-ins in neurons, mediating multiplex imaging of endogenous proteins. Thus, ORANGE enables quantification of expression, distribution, and dynamics for virtually any protein in neurons at nanoscale resolution.


Asunto(s)
Sistemas CRISPR-Cas , Epítopos/genética , Edición Génica/métodos , Neuronas/inmunología , Proteínas/genética , Animales , Células Cultivadas , Dependovirus/genética , Femenino , Técnicas de Sustitución del Gen , Genes Reporteros , Vectores Genéticos , Genoma , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones Transgénicos , Microscopía Fluorescente , Imagen Molecular/métodos , Neuronas/fisiología , Técnicas de Cultivo de Órganos , Proteínas/inmunología , Proteínas/metabolismo , Ratas Wistar , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Análisis Espacio-Temporal
2.
Mol Cell Proteomics ; 19(12): 1952-1968, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32912969

RESUMEN

At neuronal synapses, activation of group I metabotropic glutamate receptors (mGluR1/5) triggers a form of long-term depression (mGluR-LTD) that relies on new protein synthesis and the internalization of AMPA-type glutamate receptors. Dysregulation of these processes has been implicated in the development of mental disorders such as autism spectrum disorders and therefore merit a better understanding on a molecular level. Here, to study mGluR-induced signaling pathways, we integrated quantitative phosphoproteomics with the analyses of newly synthesized proteins via bio-orthogonal amino acids (azidohomoalanine) in a pulsed labeling strategy in cultured hippocampal neurons stimulated with DHPG, a specific agonist for group I mGluRs. We identified several kinases with important roles in DHPG-induced mGluR activation, which we confirmed using small molecule kinase inhibitors. Furthermore, changes in the AMPA receptor endocytosis pathway in both protein synthesis and protein phosphorylation were identified, whereby Intersectin-1 was validated as a novel player in this pathway. This study revealed several new insights into the molecular pathways downstream of group I mGluR activation in hippocampal neurons, and provides a rich resource for further analyses.


Asunto(s)
Neuronas/metabolismo , Biosíntesis de Proteínas , Proteómica , Receptores de Glutamato Metabotrópico/metabolismo , Secuencia de Aminoácidos , Animales , Endocitosis/efectos de los fármacos , Hipocampo/metabolismo , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Neuronas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Ratas , Receptores AMPA/metabolismo , Receptores de Glutamato Metabotrópico/química , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
3.
Learn Mem ; 25(10): 544-549, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30224557

RESUMEN

Multiple lines of evidence suggest that glucocorticoid hormones enhance memory consolidation of fearful events. However, most of these studies involve male individuals. Since anxiety, fear, and fear-associated disorders present differently in male and female subjects we investigated in mice whether male and female mice perform differently in a mild, auditory fear conditioning task and tested the modulatory role of glucocorticoid hormones. Using an auditory fear conditioning paradigm with different footshock intensities (0.1, 0.2, and 0.4 mA) and frequencies (1× or 3×), we find that intraperitoneal injections with corticosterone (2 mg/kg) immediately after training, altered freezing behavior when repeated footshocks were applied, and that the direction of the effects were opposite in male and female mice. Effects were independent of footshock intensity. In male mice, corticosterone consistently increased freezing behavior in response to the tone, whereas in female mice, corticosterone reduced freezing behavior 24 h after training. These effects were not related to the phase of the oestrous cycle. In addition, corticosterone enhanced extinction learning for all tones, in both male and female mice. These results emphasize that glucocorticoid hormones influence memory consolidation and retrieval, and underscore sex-specific effects of glucocorticoid hormones in modulating conditioned fear responses.


Asunto(s)
Percepción Auditiva/fisiología , Condicionamiento Psicológico/fisiología , Corticosterona/metabolismo , Extinción Psicológica/fisiología , Miedo/fisiología , Animales , Corticosterona/administración & dosificación , Electrochoque , Ciclo Estral , Femenino , Reacción Cataléptica de Congelación , Masculino , Ratones Endogámicos C57BL , Modelos Animales , Pruebas Psicológicas , Caracteres Sexuales
4.
Hum Reprod ; 33(5): 784-792, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635479

RESUMEN

In medicine, safety and efficacy are the two pillars on which the implementation of novel treatments rest. To protect the patient from unnecessary or unsafe treatments, usually, a stringent path of (pre) clinical testing is followed before a treatment is introduced into routine patient care. However, in reproductive medicine several techniques have been clinically introduced without elaborate preclinical studies. Moreover, novel reproductive techniques may harbor safety risks not only for the patients undergoing treatment, but also for the offspring conceived through these techniques. If preclinical (animal) studies were performed, efficacy and functionality the upper hand. When a new medically assisted reproduction (MAR) treatment was proven effective (i.e. if it resulted in live birth) the treatment was often rapidly implemented in the clinic. For IVF, the first study on the long-term health of IVF children was published a decade after its clinical implementation. In more recent years, prospective follow-up studies have been conducted that provided the opportunity to study the health of large groups of children derived from different reproductive techniques. Although such studies have indicated differences between children conceived through MAR and children conceived naturally, results are often difficult to interpret due to the observational nature of these studies (and the associated risk of confounding factors, e.g. subfertility of the parents), differences in definitions of clinical outcome measures, lack of uniformity in assessment protocols and heterogeneity of the underlying reasons for fertility treatment. With more novel MARs waiting at the horizon, there is a need for a framework on how to assess safety of novel reproductive techniques in a preclinical (animal) setting before they are clinically implemented. In this article, we provide a blueprint for preclinical testing of safety and health of offspring generated by novel MARs using a mouse model involving an array of tests that comprise the entire lifespan. We urge scientists to perform the proposed extensive preclinical tests for novel reproductive techniques with the goal to acquire knowledge on efficacy and the possible health effects of to-be implemented reproductive techniques to safeguard quality of novel MARs.


Asunto(s)
Técnicas Reproductivas Asistidas/efectos adversos , Femenino , Estudios de Seguimiento , Humanos , Recién Nacido , Estudios Longitudinales , Embarazo , Resultado del Embarazo , Estudios Prospectivos , Proyectos de Investigación
5.
Hum Reprod ; 33(1): 81-90, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29165614

RESUMEN

STUDY QUESTION: Is testicular transplantation of in vitro propagated spermatogonial stem cells associated with increased cancer incidence and decreased survival rates in recipient mice? SUMMARY ANSWER: Cancer incidence was not increased and long-term survival rate was not altered after transplantation of in vitro propagated murine spermatogonial stem cells (SSCs) in busulfan-treated recipients as compared to non-transplanted busulfan-treated controls. WHAT IS KNOWN ALREADY: Spermatogonial stem cell autotransplantation (SSCT) is a promising experimental reproductive technique currently under development to restore fertility in male childhood cancer survivors. Most preclinical studies have focused on the proof-of-principle of the functionality and efficiency of this technique. The long-term health of recipients of SSCT has not been studied systematically. STUDY DESIGN, SIZE, DURATION: This study was designed as a murine equivalent of a clinical prospective study design. Long-term follow-up was performed for mice who received a busulfan treatment followed by either an intratesticular transplantation of in vitro propagated enhanced green fluorescent protein (eGFP) positive SSCs (cases, n = 34) or no transplantation (control, n = 37). Using a power calculation, we estimated that 36 animals per group would be sufficient to provide an 80% power and with a 5% level of significance to demonstrate a 25% increase in cancer incidence in the transplanted group. The survival rate and cancer incidence was investigated until the age of 18 months. PARTICIPANTS/MATERIALS, SETTING, METHODS: Neonatal male B6D2F1 actin-eGFP transgenic mouse testis were used to initiate eGFP positive germline stem (GS) cell culture, which harbor SSCs. Six-week old male C57BL/6 J mice received a single dose busulfan treatment to deplete the testis from endogenous spermatogenesis. Half of these mice received a testicular transplantation of cultured eGFP positive GS cells, while the remainder of mice served as a control group. Mice were followed up until the age of 18 months (497-517 days post-busulfan) or sacrificed earlier due to severe discomfort or illness. Survival data were collected. To evaluate cancer incidence a necropsy was performed and tissues were collected. eGFP signal in transplanted testis and in benign and malignant lesions was assessed by standard PCR. MAIN RESULTS AND THE ROLE OF CHANCE: We found 9% (95% CI: 2-25%) malignancies in the transplanted busulfan-treated animals compared to 26% (95% CI: 14-45%) in the busulfan-treated control group, indicating no statistically significant difference in incidence of malignant lesions in transplanted and control mice (OR: 0.3, 95% CI: 0.1-1.1). Furthermore, none of the malignancies that arose in the transplanted animals contained eGFP signal, suggesting that they are not derived from the in vitro propagated transplanted SSCs. Mean survival time after busulfan treatment was found to be equal, with a mean survival time for transplanted animals of 478 days and 437 days for control animals (P = 0.076). LARGE SCALE DATA: NA. LIMITATIONS, REASONS FOR CAUTION: Although we attempted to mimic the future clinical application of SSCT in humans as close as possible, the mouse model that we used might not reflect all aspects of the future clinical setting. WIDER IMPLICATIONS OF THE FINDINGS: The absence of an increase in cancer incidence and a decrease in survival of mice that received a testicular transplantation of in vitro propagated SSCs is reassuring in light of the future clinical application of SSCT in humans. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by KiKa (Kika86) and ZonMw (TAS 116003002). The authors report no financial or other conflict of interest relevant to the subject of this article.


Asunto(s)
Espermatogonias/trasplante , Trasplante de Células Madre/métodos , Testículo/cirugía , Animales , Células Cultivadas , Preservación de la Fertilidad/efectos adversos , Preservación de la Fertilidad/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales , Estudios Prospectivos , Espermatogonias/citología , Espermatogonias/metabolismo , Trasplante de Células Madre/efectos adversos , Testículo/citología , Testículo/metabolismo
6.
Cell Rep ; 29(2): 258-269.e8, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597090

RESUMEN

Activation of postsynaptic metabotropic glutamate receptors (mGluRs) modulates neuronal excitability and synaptic plasticity, while deregulation of mGluR signaling has been implicated in neurodevelopmental disorders. Overstimulation of mGluRs is restricted by the rapid endocytosis of receptors after activation. However, how membrane trafficking of mGluRs at synapses is controlled remains poorly defined. We find that in hippocampal neurons, the agonist-induced receptor internalization of synaptic mGluR5 is significantly reduced in Shank knockdown neurons. This is rescued by the re-expression of wild-type Shanks, but not by mutants unable to bind Homer1b/c, Dynamin2, or Cortactin. These effects are paralleled by a reduction in synapses associated with an endocytic zone. Moreover, a mutation in SHANK2 found in autism spectrum disorders (ASDs) similarly disrupts these processes. On the basis of these findings, we propose that synaptic Shank scaffolds anchor the endocytic machinery to govern the efficient trafficking of mGluR5 and to balance the surface expression of mGluRs to efficiently modulate neuronal functioning.


Asunto(s)
Endocitosis , Proteínas del Tejido Nervioso/metabolismo , Densidad Postsináptica/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Transducción de Señal , Animales , Calcio/metabolismo , Espinas Dendríticas/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas , Transporte de Proteínas , Ratas Wistar , Receptor del Glutamato Metabotropico 5/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA