Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Faraday Discuss ; 251(0): 523-549, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38868901

RESUMEN

Despite extensive experimental and theoretical studies on the kinetics of the O(3P) + C7H8 (toluene) reaction and a pioneering crossed molecular beam (CMB) investigation, the branching fractions (BFs) of the CH3C6H4O(methylphenoxy) + H, C6H5O(phenoxy) + CH3, and spin-forbidden C5H5CH3 (methylcyclopentadiene) + CO product channels remain an open question, which has hampered the proper inclusion of this important reaction in the chemical modelling of various chemical environments. We report a CMB study with universal soft electron-ionization mass-spectrometric detection of the reactions O(3P,1D) + toluene at the collision energy of 34.7 kJ mol-1. From CMB data we have inferred the reaction dynamics and quantified the BFs of the primary products and the role of intersystem crossing (ISC). The CH3-elimination channel dominates (BF = 0.69 ± 0.22) in the O(3P) reaction, while the H-displacement and CO-formation channels are minor (BF = 0.22 ± 0.07 and 0.09 ± 0.05, respectively), with ISC accounting for more than 50% of the reactive flux. Synergistic transition-state theory (TST)-based master equation simulations including nonadiabatic TST on ab initio coupled triplet/singlet potential energy surfaces were employed to compute the product BFs and assist in the interpretation of the CMB results. In the light of the good agreement between the theoretical predictions for the O(3P) + toluene reaction and the CMB results as well as the absolute rate constant as a function of temperature (T) (from literature), the so-validated computational methodology was used to predict channel-specific rate constants as a function of T at 1 atm.

2.
J Phys Chem A ; 128(28): 5707-5720, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38967960

RESUMEN

To understand the reactivity of resonantly stabilized radicals, often found in relevant concentrations in gaseous environments, it is important to determine their main reaction pathways. Here, it is investigated whether the fulvenallenyl radical (C7H5·) reacts preferentially with closed-shell molecules or radicals. Electronic structure calculations on the C10H9 potential energy surface accessed by the reactions of C7H5· with methylacetylene (CH3CCH) and allene (H2CCCH2) were combined with RRKM-ME calculations of temperature- and pressure-dependent rate constants using the automated EStokTP software suite and kinetic modeling to assess the reactivity of C7H5· with closed-shell unsaturated hydrocarbons. Experimentally, the reactions were attempted in a chemical microreactor heated to 998 ± 10 K by preparing fulvenallenyl radicals via pyrolysis of trichloromethylbenzene (C7H5Cl3) and seeding the radicals in methylacetylene or allene carrier gas, with product identification by means of photoionization mass spectrometry. The measured photoionization efficiency curve of m/z = 128 was assigned to a linear combination of the reference curves of two C10H8 isomers, azulene (minor) and naphthalene (major), presumably resulting from the C7H5· plus C3H4 reactions. However, the calculations demonstrated that these reactions are too slow, and kinetic modeling of processes in the reactor allowed us to conclude that the observation of naphthalene and azulene is due to the C7H5· plus C3H3· reaction, where propargyl is produced by direct hydrogen atom abstraction by chlorine (Cl) atoms from allene or methylacetylene and Cl stem from the pyrolysis of C7H5Cl3. Modeling results under the copyrolysis conditions of toluene and methylacetylene in high-temperature shock tube experiments confirmed the prevalence of the fulvenallenyl reaction with propargyl over its reactions with C3H4 even when the concentrations of allene and methylacetylene largely exceed that of propargyl. Overall, the reactions of fulvenallenyl with both allene and methylacetylene were found to be noncompetitive in the formation of naphthalene and azulene thus attesting the inefficiency of the fulvenallenyl radical reactions with the prototype closed-shell hydrocarbon species. In the meantime, the new reaction pathways revealed, including H-assisted isomerizations between C10H8 isomers and decomposition reactions of various C10H9 isomers, emerge as relevant and are recommended for inclusion in combustion kinetic models for naphthalene formation.

3.
Faraday Discuss ; 245(0): 245-260, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37317673

RESUMEN

We present an experimental and theoretical investigation of the reaction of vibrationally excited CN (v = 1) with isomers of butadiene at low temperature. The experiments were conducted using the newly built apparatus, UF-CRDS, which couples near-infrared cw-cavity ring-down spectroscopy with a pulsed Laval flow. The well-matched hydrodynamic time and long ring-down time decays allow measurement of the kinetics of the reactions within a single trace of a ring-down decay, termed Simultaneous Kinetics and Ring-down (SKaR). The pulsed experiments were carried out using a Laval nozzle designed for the 70 K uniform flow with nitrogen as the carrier gas. The measured bimolecular rates for the reactions of CN (v = 1) with 1,3-butadiene and 1,2-butadiene are (3.96 ± 0.28) × 10-10 and (3.06 ± 0.35) × 10-10 cm3 per molecule per s, respectively. The reaction rate measured for CN (v = 1) with the 1,3-butadiene isomer is in good agreement with the rate previously reported for the reaction with ground state CN (v = 0) under similar conditions. We report the rate of the reaction of CN (v = 1) with the 1,2-butadiene isomer here for the first time. The experimental results were interpreted with the aid of variable reaction-coordinate transition-state theory calculations to determine rates and branching of the addition channels based on a high-level multireference treatment of the potential energy surface. H-abstraction reaction rates were also theoretically determined. For the 1,2-butadiene system, theoretical estimates are then combined with literature values for the energy-dependent product yields from the initial adducts to predict overall temperature-dependent product branching. H loss giving 2-cyano-1,3-butadiene + H is the main product channel, exclusive of abstraction, at all energies, but methyl loss forming 1-cyano-prop-3-yne is 15% at low temperature growing to 35% at 500 K. Abstraction forming HCN and various radicals is important at 500 K and above. The astrochemical implications of these results are discussed.

4.
J Phys Chem A ; 127(5): 1314-1328, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36723173

RESUMEN

Understanding the reactivities of methylcyclopentadiene and the methylcyclopentadienyl radical is important in order to improve our comprehension of the chemical kinetics leading to the formation, decomposition, and growth of the first aromatic ring, as it has been shown that five-membered-ring species are important intermediates in the reaction kinetics of aromatic species. In this work, the rate constants of some key H-abstraction reactions from methylcyclopentadiene to produce the methylcyclopentadienyl radical and the formation of fulvene and benzene from the latter are theoretically determined. Rate constants are evaluated using the ab initio transition state theory-based master equation approach, determining structures and Hessians of all stationary points at the ωB97X-D/aug-cc-pVTZ level, energies at the CCSD(T) level extrapolated to the complete basis set limit, RRKM rate constants using conventional and variational transition state theory, and phenomenological rate constants through the solution of the one-dimensional master equation. Variational corrections are determined in both internal and Cartesian coordinates, and it is found that the choice of the coordinate system can impact the accuracy of the calculated rate constants by up to a factor of 4 for H-abstraction reactions and 2 for the unimolecular decomposition of the methylcyclopentadienyl radical. The calculated rate constants are in good agreement with the available literature data. Prompt dissociation of methylcyclopentadienyl radicals accessed following H-abstraction from methylcyclopentadiene was also investigated, and the corresponding rate constants were determined; the results show that prompt dissociation plays a key role under combustion conditions. Finally, lumping of theoretically derived rate constants to account for methylcyclopentadiene ⇄ methylcyclopentadienyl tautomerism allowed the derivation of a simplified set of rate constants suitable to be inserted into kinetic mechanisms.

5.
J Phys Chem A ; 125(38): 8434-8453, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34533308

RESUMEN

Reliable modeling of hydrocarbon oxidation relies critically on knowledge of the branching fractions (BFs) as a function of temperature (T) and pressure (p) for the products of the reaction of the hydrocarbon with atomic oxygen in its ground state, O(3P). During the past decade, we have performed in-depth investigations of the reactions of O(3P) with a variety of small unsaturated hydrocarbons using the crossed molecular beam (CMB) technique with universal mass spectrometric (MS) detection and time-of-flight (TOF) analysis, combined with synergistic theoretical calculations of the relevant potential energy surfaces (PESs) and statistical computations of product BFs, including intersystem crossing (ISC). This has allowed us to determine the primary products, their BFs, and extent of ISC to ultimately provide theoretical channel-specific rate constants as a function of T and p. In this work, we have extended this approach to the oxidation of one of the most important species involved in the combustion of aromatics: the benzene (C6H6) molecule. Despite extensive experimental and theoretical studies on the kinetics and dynamics of the O(3P) + C6H6 reaction, the relative importance of the C6H5O (phenoxy) + H open-shell products and of the spin-forbidden C5H6 (cyclopentadiene) + CO and phenol adduct closed-shell products are still open issues, which have hampered the development of reliable benzene combustion models. With the CMB technique, we have investigated the reaction dynamics of O(3P) + benzene at a collision energy (Ec) of 8.2 kcal/mol, focusing on the occurrence of the phenoxy + H and spin-forbidden C5H6 + CO and phenol channels in order to shed further light on the dynamics of this complex and important reaction, including the role of ISC. Concurrently, we have also investigated the reaction dynamics of O(1D) + benzene at the same Ec. Synergistic high-level electronic structure calculations of the underlying triplet/singlet PESs, including nonadiabatic couplings, have been performed to complement and assist the interpretation of the experimental results. Statistical (RRKM)/master equation (ME) computations of the product distribution and BFs on these PESs, with inclusion of ISC, have been performed and compared to experiment. In light of the reasonable agreement between the CMB experiment, literature kinetic experimental results, and theoretical predictions for the O(3P) + benzene reaction, the so-validated computational methodology has been used to predict (i) the BF between the C6H5O + H and C5H6 + CO channels as a function of collision energy and temperature (at 0.1 and 1 bar), showing that their increase progressively favors radical (phenoxy + H)-forming over molecule (C5H6 + CO and phenol stabilization)-forming channels, and (ii) channel-specific rate constants as a function of T and p, which are expected to be useful for improved combustion models.

6.
Phys Chem Chem Phys ; 22(36): 20368-20387, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32901626

RESUMEN

The recent interest in bio-oils combustion and the key role of mono-aromatic hydrocarbons (MAHs) in existing kinetic frameworks, both in terms of poly-aromatic hydrocarbons growth and surrogate fuels formulation, motivates the current systematic theoretical investigation of one of the relevant reaction classes in MAHs pyrolysis and oxidation: ipso substitution by hydrogen. State-of-the-art theoretical methods and protocols implemented in automatized computational routines allowed to investigate 14 different potential energy surfaces involving MAHs with hydroxy and methyl single (phenol and toluene) and double (o-,m-,p-C6H4(OH)2, o-,m-,p-CH3C6H4OH, and o-,m-,p-C6H4(CH3)2) substituents, providing rate constants for direct implementation in existing kinetic models. The accuracy of the adopted theoretical method was validated by comparison of the computed rate constants with the available literature data. Systematic trends in energy barriers, pre-exponential factors, and temperature dependence of the Arrhenius parameters were found, encouraging the formulation of rate rules for ipso substitutions on MAHs. The rules here proposed allow to extrapolate from a reference system the necessary activation energy and pre-exponential factor corrections for a large number of reactions from a limited set of electronic structure calculations. We were able to estimate rate constants for other 63 ipso addition-elimination reactions on di-substituted MAHs, reporting in total 75 rate constants for ipso substitution reactions o-,m-,p-R'C6H4R + → C6H5R + ', with R,R' = OH/CH3/OCH3/CHO/C2H5, in the 300-2000 K range. Additional calculations performed for validation showed that the proposed rate rules are in excellent agreement with the rate constants calculated using the full computational protocol in the 500-2000 K range, generally with errors below 20%, increasing up to 40% in a few cases. The main results of this work are the successful application of automatized electronic structure calculations for the derivation of accurate rate constants for ipso substitution reactions on MAHs, and an efficient and innovative approach for rate rules formulation for this reaction class.

7.
J Phys Chem A ; 123(46): 9934-9956, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31647657

RESUMEN

Information on the detailed mechanism and dynamics (primary products, branching fractions (BFs), and channel specific rate constants as a function of temperature) for many important combustion reactions of O(3P) with unsaturated hydrocarbons is still lacking. We report synergistic experimental/theoretical studies on the mechanism and dynamics of the O(3P) + 1-C4H8 (1-butene) reaction by combining crossed molecular beam (CMB) experiments with soft electron ionization mass-spectrometric detection and time-of-flight analysis at 10.5 kcal/mol collision energy (Ec) to high-level ab initio electronic structure calculations of the underlying triplet and singlet potential energy surfaces (PESs) and statistical Rice-Ramsperger-Kassel-Marcus/Master Equation (RRKM/ME) computations of BFs including intersystem crossing (ISC). The reactive interaction of O(3P) with 1-butene is found to mainly break apart the 4-carbon atom chain, leading to the radical product channels ethyl + vinoxy (BF = 0.34 ± 0.11), methyl + C3H5O (BF = 0.28 ± 0.09), formyl + propyl (BF = 0.17 ± 0.05), ethyl + acetyl (BF = 0.014 ± 0.007), and butanal radical (ethylvinoxy) + H (BF = 0.013 ± 0.004), and molecular product channels formaldehyde + propenylidene/propene (BF = 0.15 ± 0.05) and butenone (ethyl ketene) + H2 (BF = 0.037 ± 0.015). As some of these products can only be formed via ISC from triplet to singlet PESs, from BFs an extent of ISC of 50% is inferred. This value is significantly larger than that recently observed for O(3P) + propene (22%) at similar Ec, underlying the question of how important it is to consider nonadiabatic effects for these and similar combustion reactions. Comparison of the derived BFs with those of statistical (RRKM/ME) simulations on the ab initio coupled triplet/singlet PESs shows good agreement, warranting the use of the RRKM/ME approach to provide information on the variation of BFs with temperature and to derive channel specific rate constants as a function of temperature (T) and pressure (p). Notably, ISC is predicted to decrease strongly with increasing temperature (from about 70% at 300 K to 46% at Ec = 10.5 kcal/mol, and about 1% at 2000 K). The present results lead to a detailed understanding of the complex reaction mechanism of O(3P) + 1-butene and, by providing channel specific rate constants as a function of T and p, should facilitate the improvement of current fossil-fuel (1-butene) as well as biofuel (1-butanol) combustion models.

10.
Phys Chem Chem Phys ; 18(42): 29616-29628, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27753437

RESUMEN

From proteins and peptides to semiconducting polymers, aliphatic chains on aromatic groups are recurring motifs in macromolecules from very diverse application fields. Fields in which molecular folding and packing determine the macroscopic physical properties that make such advanced materials appealing in the first place. Within each macromolecule, the intrinsic structure of each unit defines how it interacts with its neighbours, ultimately opening up or denying certain backbone conformations. This eventually also determines how macromolecules interact with each other. This account deals specifically with the conformational problem of many common alkylaromatic units, examining the features of an intramolecular interaction involving a side chain with as few as three methylene groups. A set of 23 model compounds featuring an intramolecular interaction between an aliphatic X-H (X = C, N, O, and S) bond and an aromatic ring was considered. Quantitative computational analysis was made possible, thanks to complete basis set extrapolated CCSD(T) calculations and NCI topological analysis, the latter of which revealed an elaborate network of dispersive and steric interactions leading to somewhat unintuitive and unexpected results, such as the higher energetic stability of certain twisted conformational isomers over those with extended side chains. Vicinal covalent effects from polarizing groups and various heteroatoms, along with the occurrence of non-dispersive phenomena, were also investigated. The conclusions drawn from the investigation include a comprehensive set of guidelines intended to aid in the prediction of the most stable conformation for this class of building blocks. Our findings affect a variety of different research fields, including the tailoring of functional materials for organic electronics and photovoltaics, with insights into a rational treatment of conformational disorder, and the study of protein- and peptide-folding preferences, putting an emphasis on peculiar interactions between the backbone and aromatic residues.

11.
J Phys Chem A ; 120(27): 4619-33, 2016 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-27010914

RESUMEN

The mechanism of the O((3)P) + CH3CCH reaction was investigated using a combined experimental/theoretical approach. Experimentally the reaction dynamics was studied using crossed molecular beams (CMB) with mass-spectrometric detection and time-of-flight analysis at 9.2 kcal/mol collision energy. Theoretically master equation (ME) simulations were performed on a potential energy surface (PES) determined using high-level ab initio electronic structure calculations. In this paper (II) the theoretical results are described and compared with experiments, while in paper (I) are reported and discussed the results of the experimental study. The PES was investigated by determining structures and vibrational frequencies of wells and transition states at the CASPT2/aug-cc-pVTZ level using a minimal active space. Energies were then determined at the CASPT2 level increasing systematically the active space and at the CCSD(T) level extrapolating to the complete basis set limit. Two separate portions of the triplet PES were investigated, as O((3)P) can add either on the terminal or the central carbon of the unsaturated propyne bond. Minimum energy crossing points (MECPs) between the triplet and singlet PESs were searched at the CASPT2 level. The calculated spin-orbit coupling constants between the T1 and S0 electronic surfaces were ∼25 cm(-1) for both PESs. The portions of the singlet PES that can be accessed from the MECPs were investigated at the same level of theory. The system reactivity was predicted integrating stochastically the one-dimensional ME using Rice-Ramsperger-Kassel-Marcus theory to determine rate constants on the full T1/S0 PESs, accounting explicitly for intersystem crossing (ISC) using the Landau-Zener model. The computational results are compared both with the branching ratios (BRs) determined experimentally in the companion paper (I) and with those estimated in a recent kinetic study at 298 K. The ME results allow to interpret the main system reactivity: CH3CCO + H and CH3 + HCCO are the major channels active on the triplet PES and are formed from the wells accessed after O addition to the terminal and central C, respectively; (1)CH3CH + CO and C2H3 + HCO are the major channels active on the singlet PES and are formed from the methylketene and acrolein wells after ISC. However, also a large number of minor channels (∼15) are active, so that the system reactivity is quite complicated. The comparison between computational and experimental BRs is quite good for the kinetic study, while some discrepancy with the CMB estimations suggests that dynamic non-ergodic effects may influence the system reactivity. Channel specific rate constants are calculated in the 300-2250 K and 1-30 bar temperature and pressure ranges. It is found that as the temperature increases the H abstraction reaction, whose contribution is negligible in the experimental conditions, increases in relevance, and the extent of ISC decreases from ∼80% at 300 K to less than 2% at 2250 K.

12.
J Phys Chem A ; 120(27): 4603-18, 2016 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-27046287

RESUMEN

We performed synergic experimental/theoretical studies on the mechanism of the O((3)P) + propyne reaction by combining crossed molecular beams experiments with mass-spectrometric detection and time-of-flight analysis at 9.2 kcal/mol collision energy (Ec) with ab initio electronic structure calculations at a high level of theory of the relevant triplet and singlet potential energy surfaces (PESs) and statistical calculations of branching ratios (BRs) taking into account intersystem crossing (ISC). In this paper (I) we report the results of the experimental investigation, while the accompanying paper (II) shows results of the theoretical investigation with comparison to experimental results. By exploiting soft electron ionization detection to suppress/mitigate the effects of the dissociative ionization of reactants, products, and background gases, product angular and velocity distributions at different charge-to-mass ratios were measured. From the laboratory data angular and translational energy distributions in the center-of-mass system were obtained for the five competing most important product channels, and product BRs were derived. The reactive interaction of O((3)P) with propyne under single collision conditions is mainly leading to the rupture of the three-carbon atom chain, with production of the radical products methylketenyl + atomic hydrogen (BR = 0.04), methyl + ketenyl (BR = 0.10), and vinyl + formyl (BR = 0.11) and the molecular products ethylidene/ethylene + carbon monoxide (BR = 0.74) and propandienal + molecular hydrogen (BR = 0.01). Because some of the products can only be formed via ISC from the entrance triplet to the low-lying singlet PES, we infer from their BRs an amount of ISC larger than 80%. This value is dramatically large when compared to the negligible ISC reported for the O((3)P) reaction with the simplest alkyne, acetylene. At the same time, it is much larger than that (∼20%) recently observed in the related reaction of the three-carbon atom alkene, O((3)P) + propene at a comparable Ec. This poses the question of how important it is to consider nonadiabatic effects and their dependence on molecular structure for this kind of combustion reactions. The prevalence of the CH3 over the H displacement channels is not explained by invoking a preference for the addition on the methyl-substituted acetylenic carbon atom, but rather it is believed to be due to the different tendencies of the two addition triplet intermediates CH3CCHO (preferentially leading to H elimination) and CH3COCH (preferentially leading to CH3 elimination) to undergo ISC to the underlying singlet PES. It is concluded that the main coproduct of the CO forming channel is singlet ethylidene ((1)CH3CH) rather than ground-state ethylene. By comparing the derived BRs with those very recently derived from kinetics studies at room temperature and 4 Torr we obtained information on how BRs vary with collision energy. The extent of ISC is estimated to remain essentially constant (∼85%) with increasing Ec from ∼1 to ∼10 kcal/mol. The present experimental results shed light on the mechanism of the title reaction at energies comparable to those involved in combustion and, when compared with the results from the statistical calculations on the ab initio coupled PESs (see accompanying paper II), lead to an in-depth understanding of the rather complex reaction mechanism of O + propyne. The overall results are expected to contribute to the development of more refined models of hydrocarbon combustion.

13.
J Phys Chem A ; 119(28): 7858-71, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25919948

RESUMEN

The results of a systematic investigation aimed at determining the dominant gas phase chemistry active during GaN MOVPE are reported and discussed in this work. This study was performed developing a thermodynamic database including the most stable GaN gas phase species and a gas phase mechanism that could efficiently describe their interconversion kinetics. The thermodynamic data and the kinetic mechanism were calculated combining density functional theory and ab initio simulations. Structures and vibrational frequencies of reactants and transition states were determined at the M062X/6-311+G(d,p) level, while energies were computed at the ROCBS-QB3 level. Rate constants were calculated using transition state theory using the rigid rotor - harmonic oscillator approximation and considering the possible degeneration of internal motions in torsional rotations. The thermodynamic analysis indicated that the Ga gas phase species formed in the highest concentration at the standard GaN deposition temperature (1300 K) is GaNH2, followed by GaH and Ga. The diatomic GaN gas phase species, often considered to be the main precursor to the film growth, is predicted to be unstable with respect to GaNH2. Among the gas phase species containing two Ga atoms, the most stable are GaNHGaH(NH2)3, GaNHGaH2(NH2)2, and GaNHGa(NH2)4, thus indicating that the substitution of the methyl groups of the precursor with H or amino groups is thermodynamically favored. Several kinetic routes leading to the formation of these species were examined. It was found that the condensation of Ga(R1)x(R2)3-x species, with R1 and R2 being either CH3, NH2, or H, is a fast process, characterized by the formation of a precursor state whose decomposition to products requires overcoming submerged energy barriers. It is suggested that these species play a key role in the formation of the first GaN nuclei, whose successive growth leads to the formation of GaN powders. A kinetic analysis performed using a fluid dynamic model allowed us to identify the main reactive routes of this complex system.

14.
J Phys Chem A ; 118(38): 8676-88, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25188006

RESUMEN

The initial steps of the electrochemical reduction of CO2 at Pt electrodes were computationally investigated at the molecular level. Simulations were performed with density functional theory using the B3LYP functional and effective core potential basis sets. The surface was modeled through two clusters comprising 13 and 20 atoms. An implicit solvation model was used to describe solvation effects for two different solvents: water and acetonitrile. It was found that CO2 adsorption is highly favored on negatively charged clusters and takes place passing from a well-defined transition state. The computational evidence suggests that the electrodic CO2 adsorption reaction may be described as a concerted process in which an electron-transfer reaction takes place contextually to CO2 adsorption. Also, the present results suggest that the formation of the CO2(•­) aqueous species is significantly unfavored from an energetic standpoint and that its main fate, if formed, would be most likely that of getting adsorbed again on the Pt surface. The calculation of the pKa of adsorbed CO2(­) showed that its protonation reaction is thermodynamically favored in most electrochemical conditions used for CO2 reduction. Also, it was found that the free-energy difference between adsorbed formate and adsorbed COOH favors the latter, suggesting that the interconversion kinetics of these two species at a Pt surface may play an important role in determining the system reactivity. A tentative global mechanism able to describe the CO2 reactivity on Pt surfaces is proposed.

15.
J Phys Chem A ; 117(25): 5221-31, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23731215

RESUMEN

Trichlorosilane is the most used precursor to deposit silicon for photovoltaic applications. Despite of this, its gas phase and surface kinetics have not yet been completely understood. In the present work, it is reported a systematic investigation aimed at determining what is the dominant gas phase chemistry active during the chemical vapor deposition of Si from trichlorosilane. The gas phase mechanism was developed calculating the rate constant of each reaction using conventional transition state theory in the rigid rotor-harmonic oscillator approximation. Torsional vibrations were described using a hindered rotor model. Structures and vibrational frequencies of reactants and transition states were determined at the B3LYP/6-31+G(d,p) level, while potential energy surfaces and activation energies were computed at the CCSD(T) level using aug-cc-pVDZ and aug-cc-pVTZ basis sets extrapolating to the complete basis set limit. As gas phase and surface reactivities are mutually interlinked, simulations were performed using a microkinetic surface mechanism. It was found that the gas phase reactivity follows two different routes. The disilane mechanism, in which the formation of disilanes as reaction intermediates favors the conversion between the most stable monosilane species, and the radical pathway, initiated by the decomposition of Si2HCl5 and followed by a series of fast propagation reactions. Though both mechanisms are active during deposition, the simulations revealed that above a certain temperature and conversion threshold the radical mechanism provides a faster route for the conversion of SiHCl3 into SiCl4, a reaction that favors the overall Si deposition process as it is associated with the consumption of HCl, a fast etchant of Si. Also, this study shows that the formation of disilanes as reactant intermediates promotes significantly the gas phase reactivity, as they contribute both to the initiation of radical chain mechanisms and provide a catalytic route for the conversion between the most stable monosilanes.

16.
Gynecol Endocrinol ; 29(11): 982-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23937196

RESUMEN

The myoma pseudocapsule (MP) is a fibro-vascular network rich of neurotransmitters, as a neurovascular bundle, surrounding fibroid and separating myoma from myometrium. We investigated the distribution of the opioid neuropeptides, as enkephalin (ENK) and oxytocin (OXT), in the nerve fibers within MP and their possible influence in human reproduction in 57 women. An histological and immunofluorescent staining of OXT and ENK was performed on nerve fibers of MP samples from the fundus, corpus and isthmian-cervical regions, with a successive morphometric quantification of OXT and ENK. None of the nerve fibers in the uterine fundus and corpus MPs contained ENK and the nerve fibers in the isthmian-cervical region demonstrated an ENK value of up to 94 ± 0.7 CU. A comparatively lower number of OXT-positive nerve fibers were found in the fundal MP (6.3 ± 0.8 CU). OXT-positive nerve fibers with OXT were marginally increased in corporal MP (15.0 ± 1.4 CU) and were substantially higher in the isthmian-cervical region MP (72.1 ± 5.1 CU) (p < 0.01). The distribution of OXY neurofibers showed a slight into the uterine corpus, while are highly present into the cervico-isthmic area, with influence on reproductive system and sexual disorders manifesting after surgical procedures on the cervix.


Asunto(s)
Cuello del Útero/patología , Encefalinas/metabolismo , Leiomiomatosis/metabolismo , Fibras Nerviosas/metabolismo , Oxitocina/metabolismo , Neoplasias Uterinas/metabolismo , Útero/metabolismo , Adulto , Cuello del Útero/cirugía , Femenino , Humanos , Histerectomía , Inmunohistoquímica , Leiomiomatosis/patología , Leiomiomatosis/fisiopatología , Leiomiomatosis/cirugía , Menorragia/etiología , Menorragia/prevención & control , Proteínas de Neoplasias/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neovascularización Patológica/fisiopatología , Neovascularización Patológica/cirugía , Fibras Nerviosas/patología , Dolor Pélvico/etiología , Dolor Pélvico/prevención & control , Neoplasias Uterinas/patología , Neoplasias Uterinas/fisiopatología , Neoplasias Uterinas/cirugía , Útero/irrigación sanguínea , Útero/inervación , Útero/patología
17.
Gynecol Endocrinol ; 29(2): 177-81, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22849656

RESUMEN

The uterine myoma pseudocapsule is a neurovascular bundle surrounding fibroid, containing neuropeptides, probably involved in uterine scar healing. We studied neurotensin (NT), neuropeptide tyrosine (NPY), and protein gene product 9.5 (PGP 9.5) nerve fibres in the pseudocapsule neurovascular bundle of intramural uterine fibroids on 67 no pregnant women by intracapsular myomectomy sparing the neurovascular bundle, sampling full thickness specimens of the pseudocapsule of uterine fibroids (PUF) and normal myometrium (NM) obtained from the fundus uteri (FU) and the uterine body (UB). The samples were sent for histological and immunofluorescent analyses and compared by morphometrical quantification. The Conventional Unit (C.U.) difference of NT, NPY, and PGP 9.5 nerve fibres was statistically analyzed. Our results showed that NT, NPY, and PGP 9.5 neurofibers are almost equally present in PUF as in NM of a no pregnant uterus. As all of these neuropeptides are present in the uterine muscle and can affect muscle contractility, uterine peristalsis and muscular healing. A myomectomy respecting the pseudocapsule neurofibers should facilitate smooth muscle scarring and promote restoration of normal uterine peristalsis with a possible positive influence on fertility.


Asunto(s)
Leiomioma/metabolismo , Miometrio/inervación , Fibras Nerviosas/metabolismo , Neuropéptido Y/metabolismo , Neurotensina/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Neoplasias Uterinas/metabolismo , Adulto , Biomarcadores/metabolismo , Femenino , Hospitales Universitarios , Humanos , Inmunohistoquímica , Italia , Japón , Leiomioma/patología , Leiomioma/fisiopatología , Leiomioma/cirugía , Leiomiomatosis/metabolismo , Leiomiomatosis/patología , Leiomiomatosis/fisiopatología , Leiomiomatosis/cirugía , Miometrio/patología , Miometrio/fisiopatología , Miometrio/cirugía , Fibras Nerviosas/patología , Tratamientos Conservadores del Órgano/métodos , Estudios Prospectivos , Contracción Uterina , Miomectomía Uterina/métodos , Neoplasias Uterinas/patología , Neoplasias Uterinas/fisiopatología , Neoplasias Uterinas/cirugía
18.
J Chem Theory Comput ; 19(21): 7626-7639, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37880932

RESUMEN

An enhanced computational protocol has been devised for the accurate characterization of gas-phase barrier-less reactions in the framework of the reaction-path (RP) and variable reaction coordinate variational transition-state theory. In particular, the synergistic combination of density functional theory and Monte Carlo sampling to optimize reactive fluxes led to a reliable yet effective computational workflow. A black-box strategy has been developed for selecting the most suited density functional with reference to a high-level one-dimensional reference potential. At the same time, different descriptions of hindered rotations are automatically selected, depending on the corresponding harmonic frequencies along the RP. The performance of the new tool is investigated by means of two prototypical reactions involving different degrees of static and dynamic correlation, namely, H2S + Cl and CH3 + CH3. The remarkable agreement of the computed kinetic parameters with the available experimental data confirms the accuracy and robustness of the proposed approach. Together with their intrinsic interest, these results also pave the way toward systematic investigations of gas-phase reactions involving barrier-less elementary steps by a reliable, user-friendly tool, which can be confidently used also by nonspecialists.

19.
Eur J Histochem ; 67(2)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37154617

RESUMEN

On behalf of the coauthors and with much regret, I must retract our publication entitled "Intrinsic innervation and dopaminergic markers after experimental denervation in rat thymus" published in European Journal of Histochemistry 2010;54(2):e17 for the following reason: Unfortunately, now, after thirteen years, we have realized that some microphotographs published in the paper have been processed to improve the presentation of the images. The three surviving authors of the paper agree that the processing of the presentation images is against the COPE Ethical Editorial Standard, although the presentation images do not alter the integrity of methodological procedures and the results of the research work, obtained from the direct analysis of slides under microscope and rigorous statistical analysis of data; therefore, we, the authors of the above indicated paper, request the retraction of the publication. We apologize for what happened.   Maurizio Sabbatini Dip. di Scienze e Innovazione Tecnologica (DISIT) Università del Piemonte Orientale Alessandria, Italy.

20.
Int J Exp Pathol ; 93(6): 401-5, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23082958

RESUMEN

In this study, age-related changes in the monoamine oxidases (MAO) were studied in the optic nerve (ON) of both young and aged male rats. The aim of the study was to assess the role of MAO in age-related changes in the rat ON and explain the mechanisms of neuroprotection mediated by MAO-B-specific inhibitors. Fifteen three month old and fifteen 26 month old Sprague-Dawley rats were used. The animals were killed by terminal anaesthesia. Staining of MAO, quantitative analysis of images, biochemical assays and statistical analysis of data were carried out. Samples of the ON were washed in water, fixed in Bowen fluid, dehydrated and embedded in Entellan. Histological sections were stained for MAO-enzymatic activities. The specificity of the reaction was evaluated by incubating control sections in a medium either without substrate or without dye. The quantitative analysis of images was carried out at the same magnification and the same lighting using a Zeiss photomicroscope. The histochemical findings were compared with the biochemical results. After enzymatic staining, MAO could be demonstrated in the ON fibres of both young and aged animals; however, MAO were increased in the nerve fibres of the elderly rats. These morphological findings were confirmed biochemically. The possibility that age-related changes in MAO levels may be attributed to impaired energy production mechanisms and/or represent the consequence of reduced energy needs is discussed.


Asunto(s)
Envejecimiento/fisiología , Monoaminooxidasa/metabolismo , Fibras Nerviosas/enzimología , Nervio Óptico/enzimología , Estrés Oxidativo/fisiología , Factores de Edad , Animales , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Masculino , Fibras Nerviosas/patología , Nervio Óptico/patología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA