Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cancer ; 129(4): 531-540, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36477735

RESUMEN

BACKGROUND: A recent breakthrough therapy combining the BCL-2 inhibitor venetoclax with hypomethylating agents (HMAs) targeting DNA methyltransferase has improved outcomes for patients with acute myeloid leukemia (AML), but the responses and long-term survival in older/unfit patients and in patients with relapsed/refractory AML remain suboptimal. Recent studies showed that inhibition of BCL-2 or DNA methyltransferase modulates AML T-cell immunity. METHODS: By using flow cytometry and time-of-flight mass cytometry, the authors examined the effects of the HMA decitabine combined with the BCL-2 inhibitor venetoclax (DAC/VEN therapy) on leukemia cells and T cells in patients with AML who received DAC/VEN therapy in a clinical trial. The authors investigated the response of programmed cell death protein 1 (PD-1) inhibition in the DAC/VEN-treated samples in vitro and investigated the triple combination of PD-1 inhibition with HMA/venetoclax in the trial patients who had AML. RESULTS: DAC/VEN therapy effectively targeted leukemia cells and upregulated the expression of the immune checkpoint-inhibitory receptor PD-1 in T cells while preserving CD4-positive and CD8-positive memory T cells in a subset of patients with AML who were tested. In vitro PD-1 inhibition potentiated the antileukemia response in DAC/VEN-treated AML samples. The combined use of azacitidine, venetoclax, and nivolumab eliminated circulating blasts and leukemia stem cells/progenitor cells and expanded the percentage of CD8-positive memory T cells in an illustrative patient with relapsed AML who responded to the regimen in an ongoing clinical trial. CONCLUSIONS: Immunomodulation by targeting PD-1 enhances the therapeutic effect of combining an HMA and venetoclax in patients with AML.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Anciano , Metiltransferasas , Receptor de Muerte Celular Programada 1/uso terapéutico , Antineoplásicos/uso terapéutico , Metilasas de Modificación del ADN , Proteínas Proto-Oncogénicas c-bcl-2/genética , ADN/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
2.
Haematologica ; 106(4): 1034-1046, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32414851

RESUMEN

FLT3 internal tandem duplication (FLT3-ITD) mutations account for ~25% of adult acute myeloid leukemia cases and are associated with poor prognosis. Venetoclax, a selective BCL-2 inhibitor, has limited monotherapy activity in relapsed/refractory acute myeloid leukemia with no responses observed in a small subset of FLT3-ITD+ patients. Further, FLT3-ITD mutations emerged at relapse following venetoclax monotherapy and combination therapy suggesting a potential mechanism of resistance. Therefore, we investigated the convergence of FLT3-ITD signaling on the BCL-2 family proteins and determined combination activity of venetoclax and FLT3-ITD inhibition in preclinical models. In vivo, venetoclax combined with quizartinib, a potent FLT3 inhibitor, showed greater anti-tumor efficacy and prolonged survival compared to monotherapies. In a patient-derived FLT3-ITD+ xenograft model, cotreatment with venetoclax and quizartinib at clinically relevant doses had greater anti-tumor activity in the tumor microenvironment compared to quizartinib or venetoclax alone. Use of selective BCL-2 family inhibitors further identified a role for BCL-2, BCL-XL and MCL-1 in mediating survival in FLT3-ITD+ cells in vivo and highlighted the need to target all three proteins for greatest anti-tumor activity. Assessment of these combinations in vitro revealed synergistic combination activity for quizartinib and venetoclax but not for quizartinib combined with BCL-XL or MCL-1 inhibition. FLT3-ITD inhibition was shown to indirectly target both BCL-XL and MCL-1 through modulation of protein expression, thereby priming cells toward BCL-2 dependence for survival. These data demonstrate that FLT3-ITD inhibition combined with venetoclax has impressive anti-tumor activity in FLT3-ITD+ acute myeloid leukemia preclinical models and provides strong mechanistic rational for clinical studies.


Asunto(s)
Leucemia Mieloide Aguda , Adulto , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Inhibidores de Proteínas Quinasas , Sulfonamidas/farmacología , Microambiente Tumoral , Tirosina Quinasa 3 Similar a fms/genética
3.
Haematologica ; 105(3): 697-707, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31123034

RESUMEN

The pathogenesis of acute myeloid leukemia (AML) involves serial acquisition of mutations controlling several cellular processes, requiring combination therapies affecting key downstream survival nodes in order to treat the disease effectively. The BCL2 selective inhibitor venetoclax has potent anti-leukemia efficacy; however, resistance can occur due to its inability to inhibit MCL1, which is stabilized by the MAPK pathway. In this study, we aimed to determine the anti-leukemia efficacy of concomitant targeting of the BCL2 and MAPK pathways by venetoclax and the MEK1/2 inhibitor cobimetinib, respectively. The combination demonstrated synergy in seven of 11 AML cell lines, including those resistant to single agents, and showed growth-inhibitory activity in over 60% of primary samples from patients with diverse genetic alterations. The combination markedly impaired leukemia progenitor functions, while maintaining normal progenitors. Mass cytometry data revealed that BCL2 protein is enriched in leukemia stem/progenitor cells, primarily in venetoclax-sensitive samples, and that cobimetinib suppressed cytokine-induced pERK and pS6 signaling pathways. Through proteomic profiling studies, we identified several pathways inhibited downstream of MAPK that contribute to the synergy of the combination. In OCI-AML3 cells, the combination downregulated MCL1 protein levels and disrupted both BCL2:BIM and MCL1:BIM complexes, releasing BIM to induce cell death. RNA sequencing identified several enriched pathways, including MYC, mTORC1, and p53 in cells sensitive to the drug combination. In vivo, the venetoclax-cobimetinib combination reduced leukemia burden in xenograft models using genetically engineered OCI-AML3 and MOLM13 cells. Our data thus provide a rationale for combinatorial blockade of MEK and BCL2 pathways in AML.


Asunto(s)
Leucemia Mieloide Aguda , Proteómica , Apoptosis , Azetidinas , Compuestos Bicíclicos Heterocíclicos con Puentes , Línea Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Piperidinas , Proteínas Proto-Oncogénicas c-bcl-2/genética , Sulfonamidas
4.
J Immunother Cancer ; 11(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37793852

RESUMEN

Immunotherapy, in the form of hematopoietic stem cell transplantation (HSCT), has been part of the standard of care in the treatment of acute leukemia for over 40 years. Trials evaluating novel immunotherapeutic approaches, such as targeting the programmed death-1 (PD-1) pathway, have unfortunately not yielded comparable results to those seen in solid tumors. Major histocompatibility complex (MHC) proteins are cell surface proteins essential for the adaptive immune system to recognize self versus non-self. MHC typing is used to determine donor compatibility when evaluating patients for HSCT. Recently, loss of MHC class II (MHC II) was shown to be a mechanism of immune escape in patients with acute myeloid leukemia after HSCT. Here we report that treatment with the tyrosine kinase inhibitor, dasatinib, and an anti-PD-1 antibody in preclinical models of Philadelphia chromosome positive B-cell acute lymphoblastic leukemia is highly active. The dasatinib and anti-PD-1 combination reduces tumor burden, is efficacious, and extends survival. Mechanistically, we found that treatment with dasatinib significantly increased MHC II expression on the surface of antigen-presenting cells (APC) in a tumor microenvironment-independent fashion and caused influx of APC cells into the leukemic bone marrow. Finally, the induction of MHC II may potentiate immune memory by impairing leukemic engraftment in mice previously cured with dasatinib, after re-inoculation of leukemia cells. In summary, our data suggests that anti-PD-1 therapy may enhance the killing ability of dasatinib via dasatinib driven APC growth and expansion and upregulation of MHC II expression, leading to antileukemic immune rewiring.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptor de Muerte Celular Programada 1 , Animales , Humanos , Ratones , Dasatinib/farmacología , Dasatinib/uso terapéutico , Antígenos de Histocompatibilidad Clase II , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Microambiente Tumoral
5.
Nat Commun ; 13(1): 2228, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484100

RESUMEN

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy with poor outcomes with conventional therapy. Nearly 100% of BPDCNs overexpress interleukin 3 receptor subunit alpha (CD123). Given that CD123 is differentially expressed on the surface of BPDCN cells, it has emerged as an attractive therapeutic target. UCART123 is an investigational product consisting of allogeneic T cells expressing an anti-CD123 chimeric antigen receptor (CAR), edited with TALEN® nucleases. In this study, we examine the antitumor activity of UCART123 in preclinical models of BPDCN. We report that UCART123 have selective antitumor activity against CD123-positive primary BPDCN samples (while sparing normal hematopoietic progenitor cells) in the in vitro cytotoxicity and T cell degranulation assays; supported by the increased secretion of IFNγ by UCART123 cells when cultured in the presence of BPDCN cells. UCART123 eradicate BPDCN and result in long-term disease-free survival in a subset of primary patient-derived BPDCN xenograft mouse models. One potential challenge of CD123 targeting therapies is the loss of CD123 antigen through diverse genetic mechanisms, an event observed in one of three BPDCN PDX studied. In summary, these results provide a preclinical proof-of-principle that allogeneic UCART123 cells have potent anti-BPDCN activity.


Asunto(s)
Neoplasias Hematológicas , Trasplante de Células Madre Hematopoyéticas , Trastornos Mieloproliferativos , Neoplasias Cutáneas , Enfermedad Aguda , Animales , Células Dendríticas/metabolismo , Neoplasias Hematológicas/tratamiento farmacológico , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Subunidad alfa del Receptor de Interleucina-3/metabolismo , Ratones , Trastornos Mieloproliferativos/metabolismo , Neoplasias Cutáneas/patología
6.
Nat Commun ; 13(1): 2801, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589701

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is commonly driven by activating mutations in NOTCH1 that facilitate glutamine oxidation. Here we identify oxidative phosphorylation (OxPhos) as a critical pathway for leukemia cell survival and demonstrate a direct relationship between NOTCH1, elevated OxPhos gene expression, and acquired chemoresistance in pre-leukemic and leukemic models. Disrupting OxPhos with IACS-010759, an inhibitor of mitochondrial complex I, causes potent growth inhibition through induction of metabolic shut-down and redox imbalance in NOTCH1-mutated and less so in NOTCH1-wt T-ALL cells. Mechanistically, inhibition of OxPhos induces a metabolic reprogramming into glutaminolysis. We show that pharmacological blockade of OxPhos combined with inducible knock-down of glutaminase, the key glutamine enzyme, confers synthetic lethality in mice harboring NOTCH1-mutated T-ALL. We leverage on this synthetic lethal interaction to demonstrate that IACS-010759 in combination with chemotherapy containing L-asparaginase, an enzyme that uncovers the glutamine dependency of leukemic cells, causes reduced glutaminolysis and profound tumor reduction in pre-clinical models of human T-ALL. In summary, this metabolic dependency of T-ALL on OxPhos provides a rational therapeutic target.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Glutamina/metabolismo , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/metabolismo , Linfocitos T/metabolismo
7.
Mol Cancer Ther ; 20(10): 1809-1819, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34253595

RESUMEN

Dual bromodomain BET inhibitors that bind with similar affinities to the first and second bromodomains across BRD2, BRD3, BRD4, and BRDT have displayed modest activity as monotherapy in clinical trials. Thrombocytopenia, closely followed by symptoms characteristic of gastrointestinal toxicity, have presented as dose-limiting adverse events that may have prevented escalation to higher dose levels required for more robust efficacy. ABBV-744 is a highly selective inhibitor for the second bromodomain of the four BET family proteins. In contrast to the broad antiproliferative activities observed with dual bromodomain BET inhibitors, ABBV-744 displayed significant antiproliferative activities largely although not exclusively in cancer cell lines derived from acute myeloid leukemia and androgen receptor positive prostate cancer. Studies in acute myeloid leukemia xenograft models demonstrated antitumor efficacy for ABBV-744 that was comparable with the pan-BET inhibitor ABBV-075 but with an improved therapeutic index. Enhanced antitumor efficacy was also observed with the combination of ABBV-744 and the BCL-2 inhibitor, venetoclax compared with monotherapies of either agent alone. These results collectively support the clinical evaluation of ABBV-744 in AML (Clinical Trials.gov identifier: NCT03360006).


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteínas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Piridinas/farmacología , Pirroles/farmacología , Sulfonamidas/farmacología , Animales , Antineoplásicos/farmacología , Apoptosis , Proliferación Celular , Quimioterapia Combinada , Femenino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Front Oncol ; 10: 991, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695673

RESUMEN

Abnormally low level of interstitial oxygen, or hypoxia, is a hallmark of tumor microenvironment and a known promoter of cancer chemoresistance. Inside a solid tumor mass, the hypoxia stems largely from inadequate supply of oxygenated blood through sparse or misshapen tumor vasculature whilst oxygen utilization rates are low in typical tumor's glycolytic metabolism. In acute leukemias, however, markers of intracellular hypoxia such as increased pimonidazole adduct staining and HIF-1α stabilization are observed in advanced leukemic bone marrows (BM) despite an increase in BM vasculogenesis. We utilized intravital fast scanning two-photon phosphorescence lifetime imaging microscopy (FaST-PLIM) in a BCR-ABL B-ALL mouse model to image the extracellular oxygen concentrations (pO2) in leukemic BM, and we related the extracellular oxygen levels to intracellular hypoxia, vascular markers and local leukemia burden. We observed a transient increase in BM pO2 in initial disease stages with intermediate leukemia BM burden, which correlated with an expansion of blood-carrying vascular network in the BM. Yet, we also observed increased formation of intracellular pimonidazole adducts in leukemic BM at the same time. This intermediate stage was followed by a significant decrease of extracellular pO2 and further increase of intracellular hypoxia as leukemia cellularity overwhelmed BM in disease end-stage. Remarkably, treatment of leukemic mice with IACS-010759, a pharmacological inhibitor of mitochondrial Complex I, substantially increased pO2 in the BM with advanced B-ALL, and it alleviated intracellular hypoxia reported by pimonidazole staining. High rates of oxygen consumption by B-ALL cells were confirmed by Seahorse assay including in ex vivo cells. Our results suggest that B-ALL expansion in BM is associated with intense oxidative phosphorylation (OxPhos) leading to the onset of metabolic BM hypoxia despite increased BM vascularization. Targeting mitochondrial respiration may be a novel approach to counteract BM hypoxia in B-ALL and, possibly, tumor hypoxia in other OxPhos-reliant malignancies.

9.
Front Oncol ; 8: 369, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319961

RESUMEN

Background: The CXCR4/SDF-1α axis plays a vital role in the retention of stem cells within the bone marrow and downstream activation of cell survival signaling pathways. LY2510924, a second generation CXCR4, showed significant anti-leukemia activity in a murine AML model. Methods: We conducted a phase I study to determine the safety and toxicity of LY2510924, idarubicin and cytarabine (IA) combination therapy in relapsed/refractory (R/R) AML. Eligible patients were 18-70 years of age receiving up to salvage 3 therapy. A peripheral blood absolute blast count of < 20,000/µL was required for inclusion. LY2510924 was administered daily for 7 days followed by IA from day 8. Two dose escalation levels (10 and 20 mg) were evaluated, with a plan to enroll up to 12 patients in the phase I portion. Results: The median age of the enrolled patients (n = 11) was 55 years (range, 19-70). Median number of prior therapies was 1 (1-3). Six and five patients were treated at dose-levels "0" (10 mg) and "1" (20 mg), respectively. Only one patient experiencing a dose limiting toxicity (grade 3 rash and myelosuppression). Three and one complete responses were observed at dose-levels "0" and "1," respectively; the overall response rate (ORR) was 36% (4 of 11 patients). A ≥ 50% decrease in CXCR4 mean fluorescence intensity was observed in 4 of 9 patients by flow cytometry, indicating incomplete suppression of CXCR4-receptor occupancy. Conclusions: The combination of LY2510924 with IA is safe in R/R AML. Dose-escalation to a 30 mg LY2510924 dose is planned to achieve complete blockade of CXCR4 receptor occupancy, followed by expansion phase at the recommended phase 2 dose-level.

10.
Oncotarget ; 9(8): 8027-8041, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29487712

RESUMEN

Patients with cytokine receptor-like factor 2 rearranged (CRLF2-re) subgroup Philadelphia chromosome-like B-cell acute lymphoblastic leukemia (Ph-like B-ALL) have a high relapse rate and poor clinical outcomes. CRFL2-re Ph-like B-ALL is characterized by heightened activation of multiple signaling pathways, including the JAK/STAT and PI3K/AKT/mTOR pathways. We hypothesized that the combined inhibition by JAK2 and mTOR inhibitors would induce an additive antileukemia effect in CRLF2-re Ph-like B-ALL. In this study, we tested the antileukemia efficacy of the type I JAK inhibitor ruxolitinib and type II JAK inhibitor NVP-BBT594 (hereafter abbreviated BBT594) [1] alone and combined with allosteric mTOR inhibitor rapamycin and a second generation ATP-competitive mTOR kinase inhibitor AZD2014. We found that BBT594/AZD2014 combination produced robust anti-leukemic effects in Ph-like cell lines in vitro and in patient-derived xenograft (PDX) cells cultured ex vivo. JAK2/mTOR inhibition arrested the cell cycle and reduced cell survival to a greater extent in Ph-like B-ALL cells with CRLF2-re and JAK2 mutation. Synergistic cell killing was associated with the greater inhibition of JAK2 phosphorylation by BBT594 than by ruxolitinib and the greater inhibition of AKT and 4E-BP1 phosphorylation by AZD2014 than by rapamycin. In vivo, BBT594/AZD2014 co-treatment was most efficacious in reducing spleen size in three Ph-like PDX models, and markedly depleted bone marrow and spleen ALL cells in an ATF7IP-JAK2 fusion PDX. In summary, combined inhibition of JAK/STAT and mTOR pathways by next-generation inhibitors had promising antileukemia efficacy in preclinical models of CRFL2-re Ph-like B-ALL.

11.
Clin Cancer Res ; 23(13): 3385-3395, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28096272

RESUMEN

Purpose: The persistence of leukemia stem cells (LSC)-containing cells after induction therapy may contribute to minimal residual disease (MRD) and relapse in acute myeloid leukemia (AML). We investigated the clinical relevance of CD34+CD123+ LSC-containing cells and antileukemia potency of a novel antibody conjugate SL-101 in targeting CD123+ LSCs.Experimental Methods and Results: In a retrospective study on 86 newly diagnosed AML patients, we demonstrated that a higher proportion of CD34+CD123+ LSC-containing cells in remission was associated with persistent MRD and predicted shorter relapse-free survival in patients with poor-risk cytogenetics. Using flow cytometry, we explored the potential benefit of therapeutic targeting of CD34+CD38-CD123+ cells by SL-101, a novel antibody conjugate comprising an anti-CD123 single-chain Fv fused to Pseudomonas exotoxin A The antileukemia potency of SL-101 was determined by the expression levels of CD123 antigen in a panel of AML cell lines. Colony-forming assay established that SL-101 strongly and selectively suppressed the function of leukemic progenitors while sparing normal counterparts. The internalization, protein synthesis inhibition, and flow cytometry assays revealed the mechanisms underlying the cytotoxic activities of SL-101 involved rapid and efficient internalization of antibody, sustained inhibition of protein synthesis, induction of apoptosis, and blockade of IL3-induced p-STAT5 and p-AKT signaling pathways. In a patient-derived xenograft model using NSG mice, the repopulating capacity of LSCs pretreated with SL-101 in vitro was significantly impaired.Conclusions: Our data define the mechanisms by which SL-101 targets AML and warrant further investigation of the clinical application of SL-101 and other CD123-targeting strategies in AML. Clin Cancer Res; 23(13); 3385-95. ©2017 AACR.


Asunto(s)
Inmunoconjugados/administración & dosificación , Subunidad alfa del Receptor de Interleucina-3/inmunología , Leucemia Mieloide Aguda/terapia , Anticuerpos de Cadena Única/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citometría de Flujo , Humanos , Inmunoconjugados/inmunología , Subunidad alfa del Receptor de Interleucina-3/antagonistas & inhibidores , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/patología , Ratones , Células Madre Neoplásicas , Transducción de Señal/inmunología , Anticuerpos de Cadena Única/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA