Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(34): 23909-23922, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39137357

RESUMEN

Platinum exhibits desirable catalytic properties, but it is scarce and expensive. Optimizing its use in key applications such as emission control catalysis is important to reduce our reliance on such a rare element. Supported Pt nanoparticles (NPs) used in emission control systems deactivate over time because of particle growth in sintering processes. In this work, we shed light on the stability against sintering of Pt NPs supported on and encapsulated in Al2O3 using a combination of nanocrystal catalysts and atomic layer deposition (ALD) techniques. We find that small amounts of alumina overlayers created by ALD on preformed Pt NPs can stabilize supported Pt catalysts, significantly reducing deactivation caused by sintering, as previously observed by others. Combining theoretical and experimental insights, we correlate this behavior to the decreased propensity of oxidized Pt species to undergo Ostwald ripening phenomena because of the physical barrier imposed by the alumina overlayers. Furthermore, we find that highly stable catalysts can present an abundance of under-coordinated Pt sites after restructuring of both Pt particles and alumina overlayers at a high temperature (800 °C) in C3H6 oxidation conditions. The enhanced stability significantly improves the Pt utilization efficiency after accelerated aging treatments, with encapsulated Pt catalysts reaching reaction rates more than two times greater than those of a control supported Pt catalyst.

2.
J Am Chem Soc ; 145(47): 25686-25694, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37931025

RESUMEN

Hexagonal boron nitride (hBN) is a highly selective catalyst for the oxidative dehydrogenation of propane (ODHP) to propylene. Using a variety of ex situ characterization techniques, the activity of the catalyst has been attributed to the formation of an amorphous boron oxyhydroxide surface layer. The ODHP reaction mechanism proceeds via a combination of surface mediated and gas phase propagated radical reactions with the relative importance of both depending on the surface-to-void-volume ratio. Here we demonstrate the unique capability of operando X-ray Raman spectroscopy (XRS) to investigate the oxyfunctionalization of the catalyst under reaction conditions (1 mm outer diameter reactor, 500 to 550 °C, P = 30 kPa C3H8, 15 kPa O2, 56 kPa He). We probe the effect of a water cofeed on the surface of the activated catalyst and find that water removes boron oxyhydroxide from the surface, resulting in a lower reaction rate when the surface reaction dominates and an enhanced reaction rate when the gas phase contribution dominates. Computational description of the surface transformations at an atomic-level combined with high precision XRS spectra simulations with the OCEAN code rationalize the experimental observations. This work establishes XRS as a powerful technique for the investigation of light element-containing catalysts under working conditions.

3.
J Am Chem Soc ; 144(41): 18766-18771, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36214757

RESUMEN

Boron oxide/hydroxide supported on oxidized activated carbon (B/OAC) was shown to be an inexpensive catalyst for the oxidative dehydrogenation (ODH) of propane that offers activity and selectivity comparable to boron nitride. Here, we obtain an atomistic picture of the boron oxide/hydroxide layer in B/OAC by using 35.2 T 11B and 17O solid-state NMR experiments. NMR spectra measured at 35.2 T resolve the boron and oxygen sites due to narrowing of the central-transition powder patterns. A 35.2 T 2D 11B{17O} dipolar heteronuclear correlation NMR spectrum revealed the structural connectivity between boron and oxygen atoms. The approach outlined here should be generally applicable to determine atomistic structures of heterogeneous catalysts containing quadrupolar nuclei.


Asunto(s)
Boro , Propano , Boro/química , Propano/química , Polvos , Carbón Orgánico , Espectroscopía de Resonancia Magnética/métodos , Oxígeno , Hidróxidos , Estrés Oxidativo
4.
Chemistry ; 26(5): 1052-1063, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31703149

RESUMEN

The complexity of variables during incipient wetness impregnation synthesis of supported metal oxides precludes an in-depth understanding of the chemical reactions governing the formation of the dispersed oxide sites. This contribution describes the use of vapor phase deposition chemistry (also known as grafting) as a tool to systematically investigate the influence of isopropanol solvent on VO(Oi Pr)3 anchoring during synthesis of vanadium oxide on silica. The availability of anchoring sites on silica was found to depend not only on the pretreatment of the silica but also on the solvent present. H-bond donors can reduce the reactivity of isolated silanols whereas disruption of silanol nests by H-bond acceptors can turn unreactive H-bonded silanols into reactive anchoring sites. The model suggested here can inform improved syntheses with increased dispersion of metal oxides on silica.

5.
Angew Chem Int Ed Engl ; 59(16): 6546-6550, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32026560

RESUMEN

Boron-containing materials have recently been identified as highly selective catalysts for the oxidative dehydrogenation (ODH) of alkanes to olefins. It has previously been demonstrated by several spectroscopic characterization techniques that the surface of these boron-containing ODH catalysts oxidize and hydrolyze under reaction conditions, forming an amorphous B2 (OH)x O(3-x/2) (x=0-6) layer. Yet, the precise nature of the active site(s) remains elusive. In this Communication, we provide a detailed characterization of zeolite MCM-22 isomorphously substituted with boron (B-MWW). Using 11 B solid-state NMR spectroscopy, we show that the majority of boron species in B-MWW exist as isolated BO3 units, fully incorporated into the zeolite framework. However, this material shows no catalytic activity for ODH of propane to propene. The catalytic inactivity of B-MWW for ODH of propane falsifies the hypothesis that site-isolated BO3 units are the active site in boron-based catalysts. This observation is at odds with other traditionally studied catalysts like vanadium-based catalysts and provides an important piece of the mechanistic puzzle.

6.
J Am Chem Soc ; 141(1): 182-190, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30525543

RESUMEN

Hexagonal boron nitride (h-BN) and boron nitride nanotubes (BNNT) were recently reported as highly selective catalysts for the oxidative dehydrogenation (ODH) of alkanes to olefins in the gas phase. Previous studies revealed a substantial increase in surface oxygen content after exposure to ODH conditions (heating to ca. 500 °C under a flow of alkane and oxygen); however, the complexity of these materials has thus far precluded an in-depth understanding of the oxygenated surface species. In this contribution, we combine advanced NMR spectroscopy experiments with scanning electron microscopy and soft X-ray absorption spectroscopy to characterize the molecular structure of the oxygen functionalized phase that arises on h-BN and BNNT following catalytic testing for ODH of propane. The pristine BN materials are readily oxidized and hydrolyzed under ODH reaction conditions to yield a phase consisting of three-coordinate boron sites with variable numbers of hydroxyl and bridging oxide groups which is denoted B(OH) xO3- x (where x = 0-3). Evidence for this robust oxide phase revises previous literature hypotheses of hydroxylated BN edges as the active component on h-BN.

7.
ChemSusChem ; 13(22): 5808-5836, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32997889

RESUMEN

Plastic solid waste (PSW) is an ever-growing environmental challenge for our society, as it not only ends up in landfills but also in waterways and oceans and is consequently entering the food chain. A key strategy to overcome this problem while also preserving carbon resources is to use PSW as a feedstock, evolving towards a circular economy. To implement this, mechanical as well as chemical recycling technologies must be developed. Indeed, owing to the high volume of PSW generated each year, mechanical recycling alone is not adequate for addressing this global challenge. Because of this, chemical recycling via thermal and heterogeneous catalytic conversion has received growing attention. This process has the potential to take PSW and convert it into usable monomers, fuels, synthesis gas, and adsorbents under more sustainable conditions than thermal degradation. This Review highlights the recent research advances in catalytic technologies for PSW conversion and valorization.

8.
ACS Catal ; 10(23): 13852-13866, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34413990

RESUMEN

Boron-based heterogenous catalysts, such as hexagonal boron nitride (h-BN) as well as supported boron oxides, are highly selective catalysts for the oxidative dehydrogenation (ODH) of light alkanes to olefins. Previous catalytic measurements and molecular characterization of boron-based catalysts by 11B solid-state NMR spectroscopy and other techniques suggests that oxidized/hydrolyzed boron clusters are the catalytically active sites for ODH. However, 11B solid-state NMR spectroscopy often suffers from limited resolution because boron-11 is an I = 3/2 half-integer quadrupolar nucleus. Here, ultra-high magnetic field (B 0 = 35.2 T) is used to enhance the resolution of 11B solid-state NMR spectra and unambiguously determine the local structure and connectivity of boron species in h-BN nanotubes used as a ODH catalyst (spent h-BNNT), boron substituted MCM-22 zeolite [B-MWW] and silica supported boron oxide [B/SiO2] before and after use as an ODH catalyst. One-dimensional direct excitation 11B NMR spectra recorded at B 0 = 35.2 T are near isotropic in nature, allowing for the easy identification of all boron species. Two-dimensional 1H-11B heteronuclear correlation NMR spectra aid in the identification of boron species with B-OH functionality. Most importantly, 2D 11B dipolar double-quantum single-quantum homonuclear correlation NMR experiments were used to unambiguously probe boron-boron connectivity within all heterogeneous catalysts. These experiments are practically infeasible at lower, more conventional magnetic fields due to a lack of resolution and reduced NMR sensitivity. The detailed molecular structures determined for the amorphous oxidized/hydrolyzed boron layers on these heterogenous catalysts will aid in the future development of next generation ODH catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA