Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(7): 11057-11064, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38570963

RESUMEN

We report on Sb-based interband cascade lasers simultaneously grown on GaSb, GaAs and Si substrates. 8 µm x 2 mm devices exhibited similar threshold currents around 40 mA at 20°C and achieved continuous-wave (CW) operation up to 65°C on GaSb, GaAs and Si substrates despite a dislocation density of ∼ 4.108 cm-2 for both mismatched substrates. In the CW regime the output power of the devices emitting at 3.3 µm exceeded 30 mW/facet at 20°C. ICLs on GaAs and Si were subsequently aged at 50°C with an injection current of 200 mA, i.e. five times the laser-threshold current. No degradation was observed after 500 h of CW operation, demonstrating the high performance of ICLs and their tolerance to dislocations.

2.
Opt Express ; 31(20): 32152-32161, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37859024

RESUMEN

Terahertz time-domain spectroscopy (THz-TDS) at room temperature and standard atmosphere pressure remains so far the backbone of THz photonics in numerous applications for civil and defense levels. Plasmonic microstructures and metasurfaces are particularly promising for improving THz spectroscopy techniques and developing biomedical and environmental sensors. Highly doped semiconductors are suitable for replacing the traditional plasmonic noble metals in the THz range. We present a perfect absorber structure based on semiconductor III-Sb epitaxial layers. The insulator layer is GaSb while the metal-like layers are Si doped InAsSb (∼ 5·1019 cm-3). The doping is optically measured in the IR with polaritonic effects at the Brewster angle mode. Theoretically, the surface can be engineered in frequency selective absorption array areas of an extensive THz region from 1.0 to 6.0 THz. The technological process is based on a single resist layer used as hard mask in dry etching defined by electron beam lithography. A wide 1350 GHz cumulative bandwidth experimental absorption is measured in THz-TDS between 1.0 and 2.5 THz, only limited by the air-exposed reflectance configuration. These results pave the way to implement finely tuned selective surfaces based on semiconductors to enhance light-matter interaction in the THz region.

3.
Opt Express ; 29(7): 11268-11276, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33820242

RESUMEN

We report GaSb-based laser diodes (LDs) grown on on-axis (001) Si substrates and emitting at 2.3 µm. Two series of LDs were studied and compared. For the first series, a GaAs-based buffer layer was first grown by metal organic chemical vapor deposition (MOCVD) before growing the laser heterostructure by molecular-beam epitaxy (MBE). For the second series, a MOCVD GaSb buffer layer was added between the MOCVD GaAs buffer layer and the MBE laser heterostructure. Both series of LDs exhibited threshold currents in the 50-100 mA range and several mW output power at room temperature. They demonstrated continuous wave operation (CW) up to 70°C (set-up limited) without thermal rollover. Broad area LDs exhibited record threshold-current densities in the 250-350 A.cm-2 range for the second series of LDs, in spite of cracks that appeared during device processing. These results show that the design and fabrication steps of the buffer-layer stacks are critical issues in the epitaxial integration of GaSb-based optoelectronic devices on Si substrates and offer room for much performance improvement.

4.
Opt Express ; 28(14): 20785-20793, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32680131

RESUMEN

We report on 2.3-µm etched-cavity GaSb-based laser diodes (LDs) epitaxially integrated on on-axis (001)Si and benchmarked against their cleaved facet counterparts. The LDs were grown in two steps. First, a GaSb-on-Si template was grown by metal-organic vapor phase epitaxy (MOVPE) before the growth of the LD heterostructure by molecular-beam epitaxy. Different etched-facet geometries operate in continuous wave well above room temperature, and their performance are similar to those of cleaved-cavity LDs. These results show that etching mirrors is a viable route to form laser cavities in the GaSb technology and that MOVPE GaSb-on-Si templates are a suitable platform for optoelectronic devices overgrowth.

5.
Opt Lett ; 44(12): 3090-3093, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31199388

RESUMEN

We present a theoretical and experimental study of guided-mode resonant (GMR) spectral filters made of III-V semiconductors and operating in the long-wave infrared (LWIR) wavelength range. In the scope of the colorization of infrared photodetectors, we used materials fully compatible with the epitaxial growth of Type 2 super lattice LWIR photodetectors: heavily n-doped InAsSb for the grating and GaSb for the waveguide of the GMR resonator.

6.
Nanotechnology ; 28(12): 125701, 2017 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-28151723

RESUMEN

We have investigated the effective dielectric response of a subwavelength grating made of highly doped semiconductors (HDS) excited in reflection, using numerical simulations and spectroscopic measurement. The studied system can exhibit strong localized surface resonances and has, therefore, a great potential for surface-enhanced infrared absorption (SEIRA) spectroscopy application. It consists of a highly doped InAsSb grating deposited on lattice-matched GaSb. The numerical analysis demonstrated that the resonance frequencies can be inferred from the dielectric function of an equivalent homogeneous slab by accounting for the complex reflectivity of the composite layer. Fourier transform infrared reflectivity (FTIR) measurements, analyzed with the Kramers-Kronig conversion technique, were used to deduce the effective response in reflection of the investigated system. From the knowledge of this phenomenological dielectric function, transversal and longitudinal energy-loss functions were extracted and attributed to transverse and longitudinal resonance modes frequencies.

7.
Opt Express ; 24(14): 16175-90, 2016 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-27410884

RESUMEN

We propose 1D periodic, highly doped InAsSb gratings on GaSb substrates as biosensing platforms applicable for surface plasmon resonance and surface enhanced infrared absorption spectroscopies. Based on finite-difference time-domain simulations, the electric field enhancement and the sensitivity on refractive index variations are investigated for different grating geometries. The proposed, optimized system achieves sensitivities of 900 nm RIU-1. A clear red shift of the plasmon resonance as well as the enhancement of an absorption line are presented for 2 nm thin adlayers in simulations. We experimentally confirm the high sensitivity of the InAsSb grating by measurements of the wavelength shift induced by a 200 nm thin polymethylmethacrylate layer and demonstrate an enhancement of vibrational signals. A comparison to a gold grating with equivalent optical properties in the mid-infrared is performed. Our simulations and experimental results underline the interest in the alternative plasmonic material InAsSb for highly sensitive biosensors for the mid-infrared spectral range.

8.
Opt Express ; 23(23): 29423-33, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26698426

RESUMEN

By using metal-free plasmonics, we report on the excitation of Fano-like resonances in the mid-infrared where the Fano asymmetric parameter, q, varies when the dielectric environment of the plasmonic resonator changes. We use silicon doped InAsSb alloy deposited by molecular beam epitaxy on GaSb substrate to realize the plasmonic resonators exclusively based on semiconductors. We first demonstrate the possibility to realize high quality samples of embedded InAsSb plasmonic resonators into GaSb host using regrowth technique. The high crystalline quality of the deposited structure is confirmed by scanning transmission electron microscopy (STEM) observation. Second, we report Fano-like resonances associated to localized surface plasmons in both cases: uncovered and covered plasmonic resonators, demonstrating a strong line shape modification. The optical properties of the embedded structures correspond to those modeled by finite-difference time-domain (FDTD) method and by a model based on Fano-like line shape. Our results show that all-semiconductor plasmonics gives the opportunity to build new plasmonic structures with embedded resonators of highly doped semiconductor in a matrix of un-doped semiconductor for mid-IR applications.

9.
Opt Express ; 23(15): 19118-28, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26367575

RESUMEN

We report on the growth, fabrication, experimental study and application in an absorption gas setup of distributed feed-back antimonide diode lasers with buried grating. First, half laser structures were grown by molecular beam epitaxy on GaSb substrates and stopped at the top of the waveguide. A second order Bragg grating was then defined by interferometric lithography on the top of the structure and dry etched by Reactive Ion Etching. The grating was, afterwards, buried thanks to an epitaxial regrowth of the top cladding layer. Finally, the wafer was processed using standard photolithography and wet etched into 10 µm-wide laser ridges. A single frequency laser emission around 2.3 µm was recorded, a maximum output power of 25 mW and a total continuous tuning range reaching 4.2 nm at fixed temperature. A device has been used to detect methane gas and shows strong potential for gas spectroscopy. This process was also replicated for a target of 3 µm laser emission. These devices showed an output power of 2.5 mW and a SMSR of at least 23 dB, with a 2.5 nm continuous tuning range at fixed temperature.

10.
Opt Express ; 22(20): 24294-303, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25322004

RESUMEN

We investigate highly-doped InAsSb layers lattice matched onto GaSb substrates by angular-dependent reflectance. A resonant dip is evidenced near the plasma frequency of thin layers. Based on Fresnel coefficient in the case of transverse electromagnetic wave, we interpret this resonance as due to the excitation of a leaky electromagnetic mode, the Brewster "mode", propagating in the metallic layer deposited on a dielectric material. Potential interest of this mode for in situ monitoring during device fabrication is also discussed.

11.
Light Sci Appl ; 12(1): 150, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328485

RESUMEN

Silicon (Si) photonics has recently emerged as a key enabling technology in many application fields thanks to the mature Si process technology, the large silicon wafer size, and promising Si optical properties. The monolithic integration by direct epitaxy of III-V lasers and Si photonic devices on the same Si substrate has been considered for decades as the main obstacle to the realization of dense photonics chips. Despite considerable progress in the last decade, only discrete III-V lasers grown on bare Si wafers have been reported, whatever the wavelength and laser technology. Here we demonstrate the first semiconductor laser grown on a patterned Si photonics platform with light coupled into a waveguide. A mid-IR GaSb-based diode laser was directly grown on a pre-patterned Si photonics wafer equipped with SiN waveguides clad by SiO2. Growth and device fabrication challenges, arising from the template architecture, were overcome to demonstrate more than 10 mW outpower of emitted light in continuous wave operation at room temperature. In addition, around 10% of the light was coupled into the SiN waveguides, in good agreement with theoretical calculations for this butt-coupling configuration. This work lift an important building block and it paves the way for future low-cost, large-scale, fully integrated photonic chips.

12.
Opt Express ; 20(14): 15540-6, 2012 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-22772249

RESUMEN

We report on the fabrication and performances of an electrically-pumped GaSb monolithic VCSEL, i.e. ,a VCSEL with two epitaxial Bragg mirrors. Selective lateral etching of a tunnel junction is used to provide current and optical confinement. Laser devices with a 6 µm tunnel-junction effective diameter operate at 2.3 µm in CW up to 70 °C, with a threshold current as low as 1.9 mA at 30 °C. The laser emission is single mode with a SMSR near 25 dB and mode-hop-free electro-thermal tunability around 14 nm. This is the first demonstration of a single-mode electrically-pumped monolithic GaSb-based VCSEL.

13.
Opt Express ; 20(11): 11665-72, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22714153

RESUMEN

In this paper we present GaInAsSb photodiodes heterogeneously integrated on SOI by BCB adhesive bonding for operation in the short-wave infrared wavelength region. Photodiodes using evanescent coupling between the silicon waveguide and the III-V structure are presented, showing a room temperature responsivity of 1.4A/W at 2.3 µm. Photodiode structures using a diffraction grating to couple from the silicon waveguide layer to the integrated photodiode are reported, showing a responsivity of 0.4A/W at 2.2 µm.


Asunto(s)
Arsenicales/química , Galio/química , Indio/química , Fotometría/instrumentación , Refractometría/instrumentación , Semiconductores , Silicio/química , Resonancia por Plasmón de Superficie/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Rayos Infrarrojos , Luz , Dispersión de Radiación , Integración de Sistemas
14.
Light Sci Appl ; 11(1): 165, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650192

RESUMEN

There is currently much activity toward the integration of mid-infrared semiconductor lasers on Si substrates for developing a variety of smart, compact, sensors based on Si-photonics integrated circuits. We review this rapidly-evolving research field, focusing on the epitaxial integration of antimonide lasers, the only technology covering the whole mid-to-far-infrared spectral range. We explain how a dedicated molecular-beam epitaxy strategy allows for achieving high-performance GaSb-based diode lasers, InAs/AlSb quantum cascade lasers, and InAs/GaInSb interband cascade lasers by direct growth on on-axis (001)Si substrates, whereas GaAs-on-Si or GaSb-on-Si layers grown by metal-organic vapor phase epitaxy in large capability epitaxy tools are suitable templates for antimonide laser overgrowth. We also show that etching the facets of antimonide lasers grown on Si is a viable approach in view of photonic integrated circuits. Remarkably, this review shows that while diode lasers are sensitive to residual crystal defects, the quantum cascade and interband cascade lasers grown on Si exhibit performances comparable to those of similar devices grown on their native substrates, due to their particular band structures and radiative recombination channels. Long device lifetimes have been extrapolated for interband cascade lasers. Finally, routes to be further explored are also presented.

15.
Sci Rep ; 8(1): 7206, 2018 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-29739962

RESUMEN

Technological platforms offering efficient integration of III-V semiconductor lasers with silicon electronics are eagerly awaited by industry. The availability of optoelectronic circuits combining III-V light sources with Si-based photonic and electronic components in a single chip will enable, in particular, the development of ultra-compact spectroscopic systems for mass scale applications. The first circuits of such type were fabricated using heterogeneous integration of semiconductor lasers by bonding the III-V chips onto silicon substrates. Direct epitaxial growth of interband III-V laser diodes on silicon substrates has also been reported, whereas intersubband emitters grown on Si have not yet been demonstrated. We report the first quantum cascade lasers (QCLs) directly grown on a silicon substrate. These InAs/AlSb QCLs grown on Si exhibit high performances, comparable with those of the devices fabricated on their native InAs substrate. The lasers emit near 11 µm, the longest emission wavelength of any laser integrated on Si. Given the wavelength range reachable with InAs/AlSb QCLs, these results open the way to the development of a wide variety of integrated sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA