Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 174(4): 908-916.e12, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30033365

RESUMEN

Some phages encode anti-CRISPR (acr) genes, which antagonize bacterial CRISPR-Cas immune systems by binding components of its machinery, but it is less clear how deployment of these acr genes impacts phage replication and epidemiology. Here, we demonstrate that bacteria with CRISPR-Cas resistance are still partially immune to Acr-encoding phage. As a consequence, Acr-phages often need to cooperate in order to overcome CRISPR resistance, with a first phage blocking the host CRISPR-Cas immune system to allow a second Acr-phage to successfully replicate. This cooperation leads to epidemiological tipping points in which the initial density of Acr-phage tips the balance from phage extinction to a phage epidemic. Furthermore, both higher levels of CRISPR-Cas immunity and weaker Acr activities shift the tipping points toward higher initial phage densities. Collectively, these data help elucidate how interactions between phage-encoded immune suppressors and the CRISPR systems they target shape bacteria-phage population dynamics.


Asunto(s)
Bacteriófagos/inmunología , Sistemas CRISPR-Cas/inmunología , Terapia de Inmunosupresión , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/virología , Evolución Molecular , Modelos Teóricos , Pseudomonas aeruginosa/genética
2.
Proc Biol Sci ; 291(2015): 20232449, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38262608

RESUMEN

Bacteria are infected by mobile genetic elements like plasmids and virulent phages, and those infections significantly impact bacterial ecology and evolution. Recent discoveries reveal that some plasmids carry anti-phage immune systems like CRISPR-Cas, suggesting that plasmids may participate in the coevolutionary arms race between virulent phages and bacteria. Intuitively, this seems reasonable as virulent phages kill the plasmid's obligate host. However, the efficiency of CRISPR-Cas systems carried by plasmids can be expected to be lower than those carried by the chromosome due to continuous segregation loss, creating susceptible cells for phage amplification. To evaluate the anti-phage protection efficiency of CRISPR-Cas on plasmids, we develop a stochastic model describing the dynamics of a virulent phage infection against which a conjugative plasmid defends using CRISPR-Cas. We show that CRISPR-Cas on plasmids provides robust protection, except in limited parameter sets. In these cases, high segregation loss favours phage outbreaks by generating a population of defenceless cells on which the phage can evolve and escape CRISPR-Cas immunity. We show that the phage's ability to exploit segregation loss depends strongly on the evolvability of both CRISPR-Cas and the phage itself.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Plásmidos , Brotes de Enfermedades , Ecología
3.
PLoS Comput Biol ; 18(7): e1010329, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35881633

RESUMEN

Bacteria have adaptive immunity against viruses (phages) in the form of CRISPR-Cas immune systems. Currently, 6 types of CRISPR-Cas systems are known and the molecular study of three of these has revealed important molecular differences. It is unknown if and how these molecular differences change the outcome of phage infection and the evolutionary pressure the CRISPR-Cas systems faces. To determine the importance of these molecular differences, we model a phage outbreak entering a population defending exclusively with a type I/II or a type III CRISPR-Cas system. We show that for type III CRISPR-Cas systems, rapid phage extinction is driven by the probability to acquire at least one resistance spacer. However, for type I/II CRISPR-Cas systems, rapid phage extinction is characterized by an a threshold-like behaviour: any acquisition probability below this threshold leads to phage survival whereas any acquisition probability above it, results in phage extinction. We also show that in the absence of autoimmunity, high acquisition rates evolve. However, when CRISPR-Cas systems are prone to autoimmunity, intermediate levels of acquisition are optimal during a phage outbreak. As we predict an optimal probability of spacer acquisition 2 factors of magnitude above the one that has been measured, we discuss the origin of such a discrepancy. Finally, we show that in a biologically relevant parameter range, a type III CRISPR-Cas system can outcompete a type I/II CRISPR-Cas system with a slightly higher probability of acquisition.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Bacterias , Bacteriófagos/genética , Evolución Biológica , Sistemas CRISPR-Cas/genética
4.
Nature ; 532(7599): 385-8, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27074511

RESUMEN

Prokaryotic CRISPR-Cas adaptive immune systems insert spacers derived from viruses and other parasitic DNA elements into CRISPR loci to provide sequence-specific immunity. This frequently results in high within-population spacer diversity, but it is unclear if and why this is important. Here we show that, as a result of this spacer diversity, viruses can no longer evolve to overcome CRISPR-Cas by point mutation, which results in rapid virus extinction. This effect arises from synergy between spacer diversity and the high specificity of infection, which greatly increases overall population resistance. We propose that the resulting short-lived nature of CRISPR-dependent bacteria-virus coevolution has provided strong selection for the evolution of sophisticated virus-encoded anti-CRISPR mechanisms.


Asunto(s)
Evolución Biológica , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/inmunología , Bacteriófagos/genética , Bacteriófagos/inmunología , Bacteriófagos/fisiología , Extinción Biológica , Aptitud Genética/genética , Aptitud Genética/fisiología , Mutación Puntual/genética , Pseudomonas aeruginosa/virología
5.
PLoS Biol ; 16(9): e2006738, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30248089

RESUMEN

The emergence and re-emergence of pathogens remains a major public health concern. Unfortunately, when and where pathogens will (re-)emerge is notoriously difficult to predict, as the erratic nature of those events is reinforced by the stochastic nature of pathogen evolution during the early phase of an epidemic. For instance, mutations allowing pathogens to escape host resistance may boost pathogen spread and promote emergence. Yet, the ecological factors that govern such evolutionary emergence remain elusive because of the lack of ecological realism of current theoretical frameworks and the difficulty of experimentally testing their predictions. Here, we develop a theoretical model to explore the effects of the heterogeneity of the host population on the probability of pathogen emergence, with or without pathogen evolution. We show that evolutionary emergence and the spread of escape mutations in the pathogen population is more likely to occur when the host population contains an intermediate proportion of resistant hosts. We also show that the probability of pathogen emergence rapidly declines with the diversity of resistance in the host population. Experimental tests using lytic bacteriophages infecting their bacterial hosts containing Clustered Regularly Interspaced Short Palindromic Repeat and CRISPR-associated (CRISPR-Cas) immune defenses confirm these theoretical predictions. These results suggest effective strategies for cross-species spillover and for the management of emerging infectious diseases.


Asunto(s)
Evolución Biológica , Enfermedades Transmisibles/microbiología , Enfermedades Transmisibles/virología , Interacciones Huésped-Patógeno , Animales , Bacteriófagos/fisiología , Biodiversidad , Enfermedades Transmisibles/parasitología , Resistencia a la Enfermedad , Humanos , Modelos Biológicos , Probabilidad
6.
Proc Biol Sci ; 283(1837)2016 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-27581884

RESUMEN

Migration of hosts and parasites can have a profound impact on host-parasite ecological and evolutionary interactions. Using the bacterium Pseudomonas aeruginosa UCBPP-PA14 and its phage DMS3vir, we here show that immigration of naive hosts into coevolving populations of hosts and parasites can influence the mechanistic basis underlying host defence evolution. Specifically, we found that at high levels of bacterial immigration, bacteria switched from clustered regularly interspaced short palindromic repeats (CRISPR-Cas) to surface modification-mediated defence. This effect emerges from an increase in the force of infection, which tips the balance from CRISPR to surface modification-based defence owing to the induced and fixed fitness costs associated with these mechanisms, respectively.


Asunto(s)
Coevolución Biológica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Fagos Pseudomonas/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/virología , Animales
7.
Microbiome ; 10(1): 137, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-36028909

RESUMEN

BACKGROUND: Phages are key drivers of genomic diversity in bacterial populations as they impose strong selective pressure on the evolution of bacterial defense mechanisms across closely related strains. The pan-immunity model suggests that such diversity is maintained because the effective immune system of a bacterial species is the one distributed across all strains present in the community. However, only few studies have analyzed the distribution of bacterial defense systems at the community-level, mostly focusing on CRISPR and comparing samples from complex environments. Here, we studied 2778 bacterial genomes and 188 metagenomes from cheese-associated communities, which are dominated by a few bacterial taxa and occur in relatively stable environments. RESULTS: We corroborate previous laboratory findings that in cheese-associated communities nearly identical strains contain diverse and highly variable arsenals of innate and adaptive (i.e., CRISPR-Cas) immunity systems suggesting rapid turnover. CRISPR spacer abundance correlated with the abundance of matching target sequences across the metagenomes providing evidence that the identified defense repertoires are functional and under selection. While these characteristics align with the pan-immunity model, the detected CRISPR spacers only covered a subset of the phages previously identified in cheese, providing evidence that CRISPR does not enable complete immunity against all phages, and that the innate immune mechanisms may have complementary roles. CONCLUSIONS: Our findings show that the evolution of bacterial defense mechanisms is a highly dynamic process and highlight that experimentally tractable, low complexity communities such as those found in cheese, can help to understand ecological and molecular processes underlying phage-defense system relationships. These findings can have implications for the design of robust synthetic communities used in biotechnology and the food industry. Video Abstract.


Asunto(s)
Bacteriófagos , Queso , Bacterias , Genoma Bacteriano , Metagenoma
8.
Nat Ecol Evol ; 6(10): 1480-1488, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35970864

RESUMEN

The diversity of resistance challenges the ability of pathogens to spread and to exploit host populations. Yet, how this host diversity evolves over time remains unclear because it depends on the interplay between intraspecific competition among host genotypes and coevolution with pathogens. Here we study experimentally the effect of coevolving phage populations on the diversification of bacterial CRISPR immunity across space and time. We demonstrate that the negative-frequency-dependent selection generated by coevolution is a powerful force that maintains host resistance diversity and selects for new resistance mutations in the host. We also find that host evolution is driven by asymmetries in competitive abilities among different host genotypes. Even if the fittest host genotypes are targeted preferentially by the evolving phages, they often escape extinctions through the acquisition of new CRISPR immunity. Together, these fluctuating selective pressures maintain diversity, but not by preserving the pre-existing host composition. Instead, we repeatedly observe the introduction of new resistance genotypes stemming from the fittest hosts in each population. These results highlight the importance of competition on the transient dynamics of host-pathogen coevolution.


Asunto(s)
Bacteriófagos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Bacterias/genética , Bacteriófagos/genética
9.
Philos Trans R Soc Lond B Biol Sci ; 374(1772): 20180097, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-30905283

RESUMEN

The durability of host resistance is challenged by the ability of pathogens to escape the defence of their hosts. Understanding the variability in the durability of host resistance is of paramount importance for designing more effective control strategies against infectious diseases. Here, we study the durability of various clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) alleles of the bacteria Streptococcus thermophilus against lytic phages. We found substantial variability in durability among different resistant bacteria. Since the escape of the phage is driven by a mutation in the phage sequence targeted by CRISPR-Cas, we explored the fitness costs associated with these escape mutations. We found that, on average, escape mutations decrease the fitness of the phage. Yet, the magnitude of this fitness cost does not predict the durability of CRISPR-Cas immunity. We contend that this variability in the durability of resistance may be because of variations in phage mutation rate or in the proportion of lethal mutations across the phage genome. These results have important implications on the coevolutionary dynamics between bacteria and phages and for the optimal deployment of resistance strategies against pathogens and pests. Understanding the durability of CRISPR-Cas immunity may also help develop more effective gene-drive strategies based on CRISPR-Cas9 technology. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.


Asunto(s)
Inmunidad Adaptativa/genética , Bacteriófagos/genética , Sistemas CRISPR-Cas/inmunología , Streptococcus thermophilus/inmunología , Streptococcus thermophilus/virología
10.
Evolution ; 71(10): 2484-2495, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28833073

RESUMEN

Bacteria perform cooperative behaviors that are exploitable by noncooperative cheats, and cheats frequently arise and coexist with cooperators in laboratory microcosms. However, evidence of competitive dynamics between cooperators and cheats in nature remains limited. Using the production of pyoverdine, an iron-scavenging molecule, and natural soil populations of Pseudomonas fluorescens, we found that (1) nonproducers are present in the population; (2) they co-occur (<1cm3 ) with pyoverdine producers; (3) they retain functional pyoverdine receptors; and (4) they can use the pyoverdine of on average 52% of producers. This suggests nonproducers can potentially act as social cheats in soil: utilizing the pyoverdine of others while producing little or none themselves. However, we found considerable variation in the extent to which nonproducers can exploit producers, as some isolates appear to produce exclusive forms of pyoverdine or kill nonproducers with toxins. We examined the consequences of this variation using theoretical modeling. We found variance in exploitability leads to some cheats gaining increased fitness benefits and others decreased benefits. However, the absolute gain in fitness from high exploitation is lower than the drop in fitness from low exploitation, decreasing the mean fitness of cheats and subsequently lowering the proportion of cheats maintained in the population. Our results suggest that although cooperator-cheat dynamics can occur in soil, a range of mechanisms can prevent nonproducers from exploiting producers.


Asunto(s)
Interacciones Microbianas/genética , Pseudomonas/genética , Microbiología del Suelo , Aptitud Genética , Variación Genética , Oligopéptidos/genética , Oligopéptidos/metabolismo , Pseudomonas/metabolismo , Pseudomonas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA