RESUMEN
INTRODUCTION: This study aimed to investigate the relationship between obstructive sleep apnea (OSA), circadian rhythms, and individual sleep-wake preferences, as measured by chronotype, and to assess the association between circadian clock gene expression and subjective sleep-related variables. METHODS: A total of 184 individuals were recruited, underwent polysomnography (PSG), and completed questionnaires including a chronotype questionnaire (CQ), insomnia severity index (ISI), and Epworth sleepiness scale (ESS). Blood samples were collected in the evening before and morning after PSG. Gene expression analysis included BMAL1, CLOCK, PER1, CRY1, NPAS2, and NR1D1. RESULTS: In the OSA group, the subjective amplitude (AM score of CQ) positively correlated with all circadian clock genes in the morning (R ≥ 0.230 and p < 0.05 for each one), while the morningness-eveningness (ME score of CQ) was only associated with the evening BMAL1 level (R = 0.192; p = 0.044). In healthy controls, insomnia severity correlated with evening expression of BMAL1, PER1, and CRY1. CONCLUSIONS: The findings highlight the complex interplay between OSA, circadian rhythms, and sleep-related variables, suggesting potential determinants of morning chronotype in OSA and implicating disrupted circadian clock function in subjective feelings of energy throughout the day. Further research is warranted to elucidate underlying mechanisms and guide personalized management strategies.
Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Apnea Obstructiva del Sueño , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Masculino , Trastornos del Inicio y del Mantenimiento del Sueño/genética , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Femenino , Apnea Obstructiva del Sueño/genética , Apnea Obstructiva del Sueño/fisiopatología , Apnea Obstructiva del Sueño/metabolismo , Persona de Mediana Edad , Relojes Circadianos/genética , Adulto , Ritmo Circadiano/genética , Polisomnografía , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Regulación de la Expresión Génica , Somnolencia , Encuestas y Cuestionarios , Cronotipo , CriptocromosRESUMEN
Interferons (IFNs) produced by airway epithelial cells are crucial in defending against pathogens. Fluctuations in IFN-λ levels may influence coronavirus disease 19 (COVID-19) severity. However, conflicting data have been reported regarding serum IFN-λ concentrations in COVID-19 patients. To address this, we evaluated serum IFN-λ levels over time in moderate and severe COVID-19 patients and their association with cytokine production and clinical parameters using the enzyme-linked immunosorbent assay (ELISA) and the Bio-Plex Pro Human Cytokine 17-plex Assay. Results from testing 51 COVID-19 patients showed that 68% lacked detectable serum IFN-λ. Among non-IFN-λ secretors, severe COVID-19 predominated. In contrast, IFN-λ secretors displayed stable IFN-λ levels in moderate cases, while severe cases showed a decline over time, which persisted even after recovery. A negative correlation was observed between IFN-λ levels and inflammatory markers. This, combined with an increase in tumor necrosis factor alpha (TNF-α) and clinical improvement, suggests a regulatory role for IFN-λ in promoting faster recovery. Despite this, survival rates were similar between the groups, indicating that while IFN-λ influences the course of the disease, it does not directly affect overall survival. In conclusion, IFN-λ is vital, but not unique, for the antiviral response and COVID-19 recovery. Simultaneously, serum IFN-λ deficiency signifies severe COVID-19.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/sangre , COVID-19/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Anciano , Índice de Severidad de la Enfermedad , Interferones/sangre , Adulto , Citocinas/sangre , Factor de Necrosis Tumoral alfa/sangre , Interleucinas/sangre , Interleucinas/genética , Interferón lambdaRESUMEN
Obstructive sleep apnea (OSA) has been linked to disruptions in circadian rhythm and neurotrophin (NFT) signaling. This study explored the link between neuromodulators, chronotype, and insomnia in OSA. The participants (n = 166) underwent polysomnography (PSG) before being categorized into either the control or the OSA group. The following questionnaires were completed: Insomnia Severity Index (ISI), Epworth Sleepiness Scale, Chronotype Questionnaire (morningness-eveningness (ME), and subjective amplitude (AM). Blood samples were collected post-PSG for protein level assessment using ELISA kits for brain-derived neurotrophic factor (BDNF), proBDNF, glial-cell-line-derived neurotrophic factor, NFT3, and NFT4. Gene expression was analyzed utilizing qRT-PCR. No significant differences were found in neuromodulator levels between OSA patients and controls. The controls with insomnia exhibited elevated neuromodulator gene expression (p < 0.05). In the non-insomnia individuals, BDNF and NTF3 expression was increased in the OSA group compared to controls (p = 0.007 for both); there were no significant differences between the insomnia groups. The ISI scores positively correlated with all gene expressions in both groups, except for NTF4 in OSA (R = 0.127, p = 0.172). AM and ME were predicting factors for the ISI score and clinically significant insomnia (p < 0.05 for both groups). Compromised compensatory mechanisms in OSA may exacerbate insomnia. The correlation between chronotype and NFT expression highlights the role of circadian misalignments in sleep disruptions.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Ritmo Circadiano , Polisomnografía , Apnea Obstructiva del Sueño , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Trastornos del Inicio y del Mantenimiento del Sueño/fisiopatología , Apnea Obstructiva del Sueño/fisiopatología , Apnea Obstructiva del Sueño/metabolismo , Apnea Obstructiva del Sueño/complicaciones , Masculino , Femenino , Persona de Mediana Edad , Adulto , Factor Neurotrófico Derivado del Encéfalo/sangre , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neurotransmisores/metabolismo , Neurotransmisores/sangre , Encuestas y Cuestionarios , Neurotrofina 3/metabolismo , Neurotrofina 3/genética , Estudios de Casos y ControlesRESUMEN
Both particulate matter and gaseous components of air pollution have already been shown to increase cardiovascular mortality in numerous studies. It is, however, important to note that on their way to the bloodstream the polluting agents pass the lung barrier. Inside the alveoli, particles of approximately 0.4-1 µm are most efficiently deposited and commonly undergo phagocytosis by lung macrophages. Not only the soluble agents, but also particles fine enough to leave the alveoli enter the bloodstream in this finite part of the endothelium, reaching thus higher concentrations in close proximity of the alveoli and endothelium. Additionally, deposits of particulate matter linger in direct proximity of the endothelial cells and may induce inflammation, immune responses, and influence endothelial barrier dysfunction thus increasing PM bioavailability in positive feedback. The presented discussion provides an overview of possible components of indoor PM and how endothelium is thus influenced, with emphasis on lung vascular endothelium and clinical perspectives.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Humanos , Endotelio Vascular/química , Células Endoteliales , Pulmón , Material Particulado/efectos adversos , Contaminación del Aire/efectos adversos , Polvo , Contaminantes Atmosféricos/efectos adversosRESUMEN
BACKGROUND: Haemophilus influenzae (H. influenzae), Streptococcus pneumoniae (pneumococcus) and influenza vaccines are administered in children to prevent infections caused by these pathogens. The benefits of vaccination for asthma control in children and the elicited immune response are not fully understood. This study aimed to investigate the impact of these vaccinations on respiratory infections, asthma symptoms, asthma severity and control status, pathogen colonization and in vitro immune responses to different stimulants mimicking infections in asthmatic children. METHODS: Children aged 4-6 years were recruited into the multicentre prospective PreDicta study conducted across five European countries. Information about vaccination history, infections, antibiotic use, inhaled corticosteroid (ICS) use and asthma symptoms in the last 12 months were obtained from questionnaires of the study. Nasopharyngeal samples were collected at the first visit to assess bacterial and viral colonization, and venous blood for isolation of peripheral blood mononuclear cells (PBMCs). The PBMCs were stimulated with phytohemagglutinin, R848, Poly I:C and zymosan. The levels of 22 cytokines and chemokines were measured in cell culture supernatants using a luminometric multiplex assay. RESULTS: One-hundred and forty asthmatic preschool children (5.3 ± 0.7 years) and 53 healthy children (5.0 ± 0.8 years) from the PreDicta cohort were included in the current study. Asthmatic children were associated with more frequent upper and lower respiratory infections, and more frequent and longer duration of antibiotic use compared with healthy children. In asthmatic children, sufficient H. influenzae vaccination was associated with a shorter duration of upper respiratory infection (URI) and overall use and average dose of ICS. The airway colonization was characterized by less pneumococcus and more rhinovirus. Pneumococcal vaccination was associated with a reduction in the use rate and average dose of ICS, improved asthma control, and less human enterovirus and more H. influenzae and rhinovirus (RV) airway colonization. Influenza vaccination in the last 12 months was associated with a longer duration of URI, but with a decrease in the occurrence of lower respiratory infection (LRI) and the duration of gastrointestinal (GI) infection and antibiotic use. Asthmatic preschoolers vaccinated with H. influenzae, pneumococcus or influenza presented higher levels of Th1-, Th2-, Th17- and regulatory T cells (Treg)-related cytokines in unstimulated PBMCs. Under stimulation, PBMCs from asthmatic preschoolers with pneumococcal vaccination displayed a predominant anti-inflammatory immune response, whereas PBMCs from asthmatic children with sufficient H. influenzae or influenza vaccination were associated with both pro- and anti-inflammatory immune responses. CONCLUSION: In asthmatic preschoolers, the standard childhood vaccinations to common respiratory pathogens have beneficial effects on asthma control and may modulate immune responses relevant to asthma pathogenesis.
Asunto(s)
Asma , Gripe Humana , Infecciones del Sistema Respiratorio , Humanos , Preescolar , Lactante , Streptococcus pneumoniae , Haemophilus influenzae , Gripe Humana/prevención & control , Estudios Prospectivos , Leucocitos Mononucleares , Infecciones del Sistema Respiratorio/microbiología , Citocinas , Inmunidad , Vacunación , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , AntiinflamatoriosRESUMEN
Atopic dermatitis (AD) is a chronic, pruritic, inflammatory dermatosis that imposes significant patient and population burdens. In addition to the cutaneous signs and symptoms, growing evidence suggests that AD is systemic in nature. Certain diseases can possibly co-occur with AD as a result of coincidental exposure to similar environmental factors. However, it is also suspected that they are linked to the pathogenesis of AD through more complex genetic and immunological mechanisms, but these correlations remain less understood. It is of great need to seek explanations for the higher frequency of the number of cardiovascular, autoimmune, neurological, psychiatric, and metabolic disorders that have been observed in epidemiologic investigations among AD patients. Moreover, analysing the immunology of chronic inflammation and its correction, activation, or suppression may prevent the development of a variety of comorbidities. As comorbid diseases in patients diagnosed with AD may potentially go undetected, physicians should be aware of them.
Asunto(s)
Dermatitis Atópica , Humanos , Comorbilidad , Piel , Inflamación/epidemiologíaRESUMEN
Neurotrophins (NT) might be associated with the pathophysiology of obstructive sleep apnea (OSA) due to concurrent intermittent hypoxia and sleep fragmentation. Such a relationship could have implications for the health and overall well-being of patients; however, the literature on this subject is sparse. This study investigated the alterations in the serum protein concentration and the mRNA expression of the brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), neurotrophin-3 (NTF3), and neurotrophin-4 (NTF4) proteins following a single night of continuous positive airway pressure (CPAP) therapy. This study group consisted of 30 patients with OSA. Venous blood was collected twice after a diagnostic polysomnography (PSG) and PSG with CPAP treatment. Gene expression was assessed with a quantitative real-time polymerase chain reaction. An enzyme-linked immunosorbent assay was used to determine the protein concentrations. After CPAP treatment, BDNF, proBDNF, GDNF, and NTF4 protein levels decreased (p = 0.002, p = 0.003, p = 0.047, and p = 0.009, respectively), while NTF3 increased (p = 0.001). Sleep latency was correlated with ΔPSG + CPAP/PSG gene expression for BDNF (R = 0.387, p = 0.038), NTF3 (R = 0.440, p = 0.019), and NTF4 (R = 0.424, p = 0.025). OSA severity parameters were not associated with protein levels or gene expressions. CPAP therapy could have an impact on the posttranscriptional stages of NT synthesis. The expression of different NTs appears to be connected with sleep architecture but not with OSA severity.
Asunto(s)
Presión de las Vías Aéreas Positiva Contínua , Apnea Obstructiva del Sueño , Humanos , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Apnea Obstructiva del Sueño/genética , Apnea Obstructiva del Sueño/terapia , Apnea Obstructiva del Sueño/diagnóstico , Expresión GénicaRESUMEN
The Gastric pathogen Helicobacter pylori (HP) may influence the development of coronary heart disease (CHD). H. pylori induce reactive oxygen species (ROS), which transform cholesterol to 7-ketocholesterol (7-kCh), a CHD risk factor. Acetylsalicylic acid (ASA)-an Anti-aggregation drug used in CHD patients-may increase gastric bleeding and inflammation. We examined whether H. pylori driven ROS effects in the cell cultures of gastric epithelial cells (AGS) and vascular endothelial cells (HUVEC) progress in the milieu of 7-kCh and ASA. Cell cultures, exposed to 7-kCh or ASA alone or pulsed with the H. pylori antigenic complex-Glycine acid extract (GE), urease (UreA), cytotoxin associated gene A (CagA) protein or lipopolysaccharide (LPS), alone or with 7-kCh and ASA-were examined for ROS, apoptosis, cell integrity, interleukin (IL)-8, the activation of signal transducer, the activator of transcription 3 (STAT3), and wound healing. ASA and 7-kCh alone, and particularly in conjunction with H. pylori components, increased the ROS level and the rate of apoptosis, which was followed by cell disintegration, the activation of STAT3, and IL-8 elevation. AGS cells were unable to undergo wound healing. The cell ROS response to H. pylori components may be elevated by 7-kCh and ASA.
Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Antígenos Bacterianos , Aspirina/metabolismo , Aspirina/farmacología , Células Endoteliales/metabolismo , Células Epiteliales/metabolismo , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Humanos , Cetocolesteroles , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Human coronaviruses (HCoVs) such as HCoV-229E or OC43 are responsible for mild upper airway infections, whereas highly pathogenic HCoVs, including SARS-CoV, MERS-CoV and SARS-CoV-2, often evoke acute, heavy pneumonias. They tend to induce immune responses based on interferon and host inflammatory cytokine production and promotion of T1 immune profile. Less is known about their effect on T2-type immunity. Unlike human rhinoviruses (HRV) and Respiratory Syncytial Virus (RSV), HCoVs are not considered as a dominant risk factor of severe exacerbations of asthma, mostly T2-type chronic inflammatory disease. The relationship between coronaviruses and T2-type immunity, especially in asthma and allergy, is not well understood. This review aims to summarize currently available knowledge about the relationship of HCoVs, including novel SARS-CoV-2, with asthma and allergic inflammation.
Asunto(s)
Asma/inmunología , COVID-19/inmunología , Hipersensibilidad/inmunología , SARS-CoV-2/inmunología , Asma/virología , Coronavirus/inmunología , Humanos , Hipersensibilidad/virologíaRESUMEN
BACKGROUND: Impaired regeneration of airway epithelium may lead to persistence of inflammation and remodelling. Regeneration of injured epithelium is a complex phenomenon and the role of toll-like receptors (TLRs) in the stimulation of respiratory virus products in this process has not been established. OBJECTIVE: This study was undertaken to test the hypothesis that the wound repair process in airway epithelium is modulated by microbial products via toll-like receptors. METHODS: Injured and not-injured bronchial epithelial cells (ECs) (BEAS-2B line) were incubated with the TLR agonists poly(I:C), lipopolisacharide (LPS), allergen Der p1, and supernatants from virus-infected epithelial cells, either alone or in combination with TLR inhibitors. Regeneration and immune response in injured and not-injured cells were studied. RESULTS: Addition of either poly(I:C) or LPS to ECs induced a marked inhibition of wound repair. Supernatants from RV1b-infected cells also decreased regeneration. Preincubation of injured and not-injured ECs with TLR inhibitors decreased LPS and poly(I:C)-induced repair inhibition. TGF-ß and RANTES mRNA expression was higher in injured ECs and IFN-α, IFN-ß, IL-8, and VEGF mRNA expression was lower in damaged epithelium as compared to not-injured. Stimulation with poly(I:C) increased IFN-α and IFN-ß mRNA expression in injured cells, and LPS stimulation decreased interferons mRNA expression both in not-injured and injured ECs. CONCLUSION: Regeneration of the airway epithelium is modulated by microbial products via toll-like receptors.
Asunto(s)
Regeneración/efectos de los fármacos , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/fisiología , Receptores Toll-Like/agonistas , Cicatrización de Heridas/efectos de los fármacos , Alérgenos/farmacología , Antivirales/farmacología , Bronquios/efectos de los fármacos , Bronquios/lesiones , Bronquios/fisiología , Bronquios/virología , Línea Celular , Humanos , Inductores de Interferón/farmacología , Lipopolisacáridos/farmacología , Poli I-C/farmacología , Mucosa Respiratoria/lesiones , Mucosa Respiratoria/virología , Receptores Toll-Like/antagonistas & inhibidoresAsunto(s)
Asma , MicroARNs , Infecciones por Picornaviridae , Humanos , Leucocitos Mononucleares , MicroARNs/genética , RhinovirusRESUMEN
BACKGROUND: Human vascular endothelial function and integrity may be regulated by many non-specific factors. However, the potential influence of specific antigens via an IgE-mediated mechanism remains unknown. The aim of the study was to determine the expression of the IgE receptors FcεRI and FcεRII in the human vascular endothelium and to assess their relevance in the IgE-mediated regulation of endothelial integrity. MATERIAL/METHODS: FcεRI and FcεRII expression in human umbilical vein endothelial cells (HUVEC) was genetically assessed by PCR with respective primers and sequencing. HUVEC were cultured with IL-4, and changes in FcεRI and FcεRII mRNA expression were analyzed by real-time PCR. Changes in the integrity of endothelium pre-treated with anti-BSA-DNP IgE following exposure to the specific BSA-DNP antigen was assessed using the Real-time Cell Electric Impedance Sensing system (RTCA-DP). RESULTS: PCR and sequencing revealed the expression of FcεRI and FcεRII receptors in the human vascular endothelium. IL-4 caused respective 2- and 3-fold increases in FcεRI and FcεRII mRNA expression. Exposure of endothelium pre-treated with anti-BSA-DNP IgE to specific BSA-DNP antigen led to a 20% increase of endothelial integrity (p<0.05) after 24 hours, but only in cells pre-incubated with IL-4. CONCLUSIONS: The presence of FcεRI and FcεRII may allow the human vascular endothelium to respond to a specific antigen by increasing its integrity via an IgE-mediated mechanism.
Asunto(s)
Anticuerpos Antiidiotipos/inmunología , Inmunoglobulina E/inmunología , Receptores de IgE/inmunología , Células Cultivadas , Humanos , Interleucina-4/inmunologíaRESUMEN
Human rhinovirus 16 (HRV16) may induce inflammatory and antiviral responses in the human lung vascular endothelium (ECs) and impair its barrier functions after infection. However, ECs may regain barrier and metabolic functions. Mechanisms of limitation of HRV16 infection in the lung vascular endothelium are unknown. Human lung vascular endothelium (HMVEC-L) was infected with HRV16. IFN-ß, OAS-1, and PKR expression was assessed by real-time PCR, flow cytometry, and confocal microscope. To prove the significance of IFN-ß in the limitation of HRV16 replication, HMVEC-Ls were preincubated with anti-IFN-ß Abs. To prove the involvement of OAS-1 and PKR in the IFN-dependent limitation of HRV16 replication, HMVEC-Ls were transfected with respective siRNA. HRV16 stimulated IFN-ß production and activated intracellular mechanisms of antiviral immunity based on OAS-1 and PKR activation. Blocking of IFN-ß contributed to the inhibition of intracellular mechanisms of antiviral immunity (OAS-1, PKR) and boosted replication of HRV16. Effective OAS-1 silencing by siRNA caused the increase of HRV16 copy numbers after HRV16 infection. siRNA upregulated the other genes related to the antiviral response. The infected lung vascular endothelium may limit the HRV16 infection. This limitation may be associated with the induction of IFN-ß-dependent intracellular mechanisms based on OAS-1 and PKR activity.
Asunto(s)
Endotelio Vascular , Pulmón , Humanos , Expresión Génica , ARN Interferente Pequeño/genética , Interferón beta/metabolismoRESUMEN
Obstructive sleep apnea (OSA) is characterized by co-occurrence with affective disorders. Our study aims to investigate the association of circadian clock gene expressions, and the presence and severity of depressive symptoms in OSA patients. The study included 184 individuals, who underwent polysomnography (PSG) and had their peripheral blood collected in the evening before and the morning after the PSG. Patients were divided into two groups: the OSA (apnea-hypopnea index (AHI) > 5) and the control group (AHI < 5). RNA was extracted from peripheral blood leukocytes. Expression levels of the selected genes (BMAL1, CLOCK, PER1, CRY1, NPAS2, and NR1D1) were assessed by qRT-PCR. Questionnaire data was collected in the morning (including the Insomnia Severity Index (ISI), Epworth Sleepiness Scale (ESS), Chronotype Questionnaire (CQ), and Montgomery-Åsberg Depression Rating Scale (MADRS)). The expression of all examined circadian clock genes in OSA patients was upregulated in the morning compared to the evening (except NPAS2). No differences were observed between OSA and control groups at either time point. Additionally, there was a positive correlation between the severity of depressive symptoms (assessed with MADRS) and morning expression of circadian genes in the group of OSA patients. Finally, in multivariable linear regression, ISI score (B = 0.750, p < 0.001), AM score of CQ (B = 0.416, p = 0.007), and morning PER1 gene expression (B = 4.310, p = 0.042) were found to be predictive factors for greater severity of depression symptoms in OSA patients. Dysregulated circadian clock gene expression in OSA patients is linked to depressive symptom severity, suggesting circadian disruption may underlie affective symptoms in OSA.
Asunto(s)
Relojes Circadianos , Depresión , Polisomnografía , Apnea Obstructiva del Sueño , Humanos , Apnea Obstructiva del Sueño/genética , Apnea Obstructiva del Sueño/fisiopatología , Masculino , Persona de Mediana Edad , Femenino , Relojes Circadianos/genética , Depresión/genética , Adulto , Proteínas CLOCK/genética , Índice de Severidad de la Enfermedad , Ritmo Circadiano/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas del Tejido Nervioso , Factores de Transcripción ARNTL , CriptocromosRESUMEN
OBJECTIVE AND DESIGN: The damage of barrtier tissues, such as the vascular endothelium and intestinal epithelium, may lead to disturbances of local immune homeostasis. The aim of the study was to assess and compare the effect of oxidized cholesterols (7-ketocholesterol and 25-hydroxycholesterol) on the barrier properties of human primary aortic endothelium (HAEC) and intestinal epithelium Caco-2 cells using a realtime cell electric impedance sensing system (RTCA-DP). MATERIALS AND METHODS: HAEC and Caco-2 cells were stimulated with 7-ketocholesterol and 25-hydroxycholesterol by the RTCA-DP system. Apoptosis was assessed by flow cytometry and cell monolayer morphology was assessed under a light microscope. RESULTS: 7-ketocholesterol decreased impedance (nCI) in both the endothelium and epithelium. However, the decrease was more profound in the endothelium. Similarly, although 25-hydroxycholesterol decreased nCI in both the endothelium and epithelium, the effect was weaker than that of 7-ketocholesterol, which caused extensive damage to the endothelial monolayer, while 25-hydroxycholesterol caused partial damage and did not affect the epithelial monolayer. 7-ketocholesterol, but not 25-hydroxycholesterol, increased endothelial cell apoptosis and decreased the viability of endothelial cells. However, 7-ketocholesterol and 25-hydroxycholesterol decreased epithelial cell apoptosis and increased viability. CONCLUSION: Oxidized cholesterols destroy the HAEC, but not the Caco-2 epithelial barrier, via cell apoptosis dependent on the site of oxidation. Damage to the endothelium by oxidized cholesterol may disrupt local homeostasis and provide open access to inner parts of the vascular wall for lipids, other peripheral blood-derived agents, and immune cells, leading to inflammation and atherogenesis.