Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Biol Chem ; 299(10): 105201, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660915

RESUMEN

In this study, we investigated the S-acylation of two host cell proteins important for viral infection: TMPRSS2 (transmembrane serine protease 2), which cleaves severe acute respiratory syndrome coronavirus 2 spike to facilitate viral entry, and bone marrow stromal antigen 2, a general viral restriction factor. We found that both proteins were S-acylated by zDHHC6, an S-acyltransferase enzyme localized at the endoplasmic reticulum, in coexpression experiments. Mutagenic analysis revealed that zDHHC6 modifies a single cysteine in each protein, which are in proximity to the transmembrane domains (TMDs). For TMPRSS2, the modified cysteine is positioned two residues into the TMD, whereas the modified cysteine in bone marrow stromal antigen 2 has a cytosolic location two amino acids upstream of the TMD. Cysteine swapping revealed that repositioning the target cysteine of TMPRSS2 further into the TMD substantially reduced S-acylation by zDHHC6. Interestingly, zDHHC6 efficiently S-acylated truncated forms of these proteins that contained only the TMDs and short juxtamembrane regions. The ability of zDHHC6 to modify short TMD sequences was also seen for the transferrin receptor (another type II membrane protein) and for five different type I membrane protein constructs, including cluster of differentiation 4. Collectively, the results of this study show that zDHHC6 can modify diverse membrane proteins (type I and II) and requires only the presence of the TMD and target cysteine for efficient S-acylation. Thus, zDHHC6 may be a broad specificity S-acyltransferase specialized for the modification of a diverse set of transmembrane proteins at the endoplasmic reticulum.

2.
J Biol Chem ; 299(1): 102754, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442513

RESUMEN

S-acylation is an essential post-translational modification, which is mediated by a family of 23 zDHHC enzymes in humans. Several thousand proteins are modified by S-acylation; however, we lack a detailed understanding of how enzyme-substrate recognition and specificity is achieved. Previous work showed that the ankyrin repeat domain of zDHHC17 (ANK17) recognizes a short linear motif, known as the zDHHC ANK binding motif (zDABM) in substrate protein SNAP25, as a mechanism of substrate recruitment prior to S-acylation. Here, we investigated the S-acylation of the Sprouty and SPRED family of proteins by zDHHC17. Interestingly, although Sprouty-2 (Spry2) contains a zDABM that interacts with ANK17, this mode of binding is dispensable for S-acylation, and indeed removal of the zDABM does not completely ablate binding to zDHHC17. Furthermore, the related SPRED3 protein interacts with and is efficiently S-acylated by zDHHC17, despite lacking a zDABM. We undertook mutational analysis of SPRED3 to better understand the basis of its zDABM-independent interaction with zDHHC17. This analysis found that the cysteine-rich SPR domain of SPRED3, which is the defining feature of all Sprouty and SPRED proteins, interacts with zDHHC17. Surprisingly, the interaction with SPRED3 was independent of ANK17. Our mutational analysis of Spry2 was consistent with the SPR domain of this protein containing a zDHHC17-binding site, and Spry2 also showed detectable binding to a zDHHC17 mutant lacking the ANK domain. Thus, zDHHC17 can recognize its substrates through zDABM-dependent and/or zDABM-independent mechanisms, and some substrates display more than one mode of binding to this enzyme.


Asunto(s)
Aciltransferasas , Proteínas de la Membrana , Animales , Humanos , Ratones , Ratas , Acilación , Aciltransferasas/genética , Aciltransferasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Repetición de Anquirina , Sitios de Unión , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo
3.
J Biol Chem ; 298(10): 102469, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36087837

RESUMEN

Protein S-acylation is a reversible post-translational modification that modulates the localization and function of many cellular proteins. S-acylation is mediated by a family of zinc finger DHHC (Asp-His-His-Cys) domain-containing (zDHHC) proteins encoded by 23 distinct ZDHHC genes in the human genome. These enzymes catalyze S-acylation in a two-step process involving "autoacylation" of the cysteine residue in the catalytic DHHC motif followed by transfer of the acyl chain to a substrate cysteine. S-acylation is essential for many fundamental physiological processes, and there is growing interest in zDHHC enzymes as novel drug targets for a range of disorders. However, there is currently a lack of chemical modulators of S-acylation either for use as tool compounds or for potential development for therapeutic purposes. Here, we developed and implemented a novel FRET-based high-throughput assay for the discovery of compounds that interfere with autoacylation of zDHHC2, an enzyme that is implicated in neuronal S-acylation pathways. Our screen of >350,000 compounds identified two related tetrazole-containing compounds (TTZ-1 and TTZ-2) that inhibited both zDHHC2 autoacylation and substrate S-acylation in cell-free systems. These compounds were also active in human embryonic kidney 293T cells, where they inhibited the S-acylation of two substrates (SNAP25 and PSD95 [postsynaptic density protein 95]) mediated by different zDHHC enzymes, with some apparent isoform selectivity. Furthermore, we confirmed activity of the hit compounds through resynthesis, which provided sufficient quantities of material for further investigations. The assays developed provide novel strategies to screen for zDHHC inhibitors, and the identified compounds add to the chemical toolbox for interrogating cellular activities of zDHHC enzymes in S-acylation.


Asunto(s)
Aciltransferasas , Cisteína , Descubrimiento de Drogas , Humanos , Acilación/efectos de los fármacos , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/metabolismo , Cisteína/metabolismo , Lipoilación , Dedos de Zinc
4.
Physiol Rev ; 95(2): 341-76, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25834228

RESUMEN

Protein S-acylation, the only fully reversible posttranslational lipid modification of proteins, is emerging as a ubiquitous mechanism to control the properties and function of a diverse array of proteins and consequently physiological processes. S-acylation results from the enzymatic addition of long-chain lipids, most typically palmitate, onto intracellular cysteine residues of soluble and transmembrane proteins via a labile thioester linkage. Addition of lipid results in increases in protein hydrophobicity that can impact on protein structure, assembly, maturation, trafficking, and function. The recent explosion in global S-acylation (palmitoyl) proteomic profiling as a result of improved biochemical tools to assay S-acylation, in conjunction with the recent identification of enzymes that control protein S-acylation and de-acylation, has opened a new vista into the physiological function of S-acylation. This review introduces key features of S-acylation and tools to interrogate this process, and highlights the eclectic array of proteins regulated including membrane receptors, ion channels and transporters, enzymes and kinases, signaling adapters and chaperones, cell adhesion, and structural proteins. We highlight recent findings correlating disruption of S-acylation to pathophysiology and disease and discuss some of the major challenges and opportunities in this rapidly expanding field.


Asunto(s)
Ácido Palmítico/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Acilación , Animales , Humanos , Conformación Proteica , Proteínas/química , Proteómica/métodos , Transducción de Señal , Relación Estructura-Actividad
5.
J Cell Sci ; 133(22)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203738

RESUMEN

Almost two decades have passed since seminal work in Saccharomyces cerevisiae identified zinc finger DHHC domain-containing (zDHHC) enzymes as S-acyltransferases. These enzymes are ubiquitous in the eukarya domain, with 23 distinct zDHHC-encoding genes in the human genome. zDHHC enzymes mediate the bulk of S-acylation (also known as palmitoylation) reactions in cells, transferring acyl chains to cysteine thiolates, and in so-doing affecting the stability, localisation and function of several thousand proteins. Studies using purified components have shown that the minimal requirements for S-acylation are an appropriate zDHHC enzyme-substrate pair and fatty acyl-CoA. However, additional proteins including GCP16 (also known as Golga7), Golga7b, huntingtin and selenoprotein K, have been suggested to regulate the activity, stability and trafficking of certain zDHHC enzymes. In this Review, we discuss the role of these accessory proteins as essential components of the cellular S-acylation system.


Asunto(s)
Aciltransferasas , Lipoilación , Acilación , Aciltransferasas/genética , Aciltransferasas/metabolismo , Humanos , Dedos de Zinc
6.
J Cell Sci ; 133(21)2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33037124

RESUMEN

Sprouty-2 is an important regulator of growth factor signalling and a tumour suppressor protein. The defining feature of this protein is a cysteine-rich domain (CRD) that contains twenty-six cysteine residues and is modified by S-acylation. In this study, we show that the CRD of sprouty-2 is differentially modified by S-acyltransferase enzymes. The high specificity/low activity zDHHC17 enzyme mediated restricted S-acylation of sprouty-2, and cysteine-265 and -268 were identified as key targets of this enzyme. In contrast, the low specificity/high activity zDHHC3 and zDHHC7 enzymes mediated more expansive modification of the sprouty-2 CRD. Nevertheless, S-acylation by all enzymes enhanced sprouty-2 expression, suggesting that S-acylation stabilises this protein. In addition, we identified two charged residues (aspartate-214 and lysine-223), present on opposite faces of a predicted α-helix in the CRD, which are essential for S-acylation of sprouty-2. Interestingly, mutations that perturbed S-acylation also led to a loss of plasma membrane localisation of sprouty-2 in PC12 cells. This study provides insight into the mechanisms and outcomes of sprouty-2 S-acylation, and highlights distinct patterns of S-acylation mediated by different classes of zDHHC enzymes.


Asunto(s)
Aciltransferasas , Cisteína , Proteínas del Tejido Nervioso/metabolismo , Acilación , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Membrana Celular/metabolismo , Cisteína/genética , Cisteína/metabolismo , Ratas
7.
J Biol Chem ; 295(43): 14640-14652, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32817054

RESUMEN

The human zDHHC S-acyltransferase family comprises 23 enzymes that mediate the S-acylation of a multitude of cellular proteins, including channels, receptors, transporters, signaling molecules, scaffolds, and chaperones. This reversible post-transitional modification (PTM) involves the attachment of a fatty acyl chain, usually derived from palmitoyl-CoA, to specific cysteine residues on target proteins, which affects their stability, localization, and function. These outcomes are essential to control many processes, including synaptic transmission and plasticity, cell growth and differentiation, and infectivity of viruses and other pathogens. Given the physiological importance of S-acylation, it is unsurprising that perturbations in this process, including mutations in ZDHHC genes, have been linked to different neurological pathologies and cancers, and there is growing interest in zDHHC enzymes as novel drug targets. Although zDHHC enzymes control a diverse array of cellular processes and are associated with major disorders, our understanding of these enzymes is surprisingly incomplete, particularly with regard to the regulatory mechanisms controlling these enzymes. However, there is growing evidence highlighting the role of different PTMs in this process. In this review, we discuss how PTMs, including phosphorylation, S-acylation, and ubiquitination, affect the stability, localization, and function of zDHHC enzymes and speculate on possible effects of PTMs that have emerged from larger screening studies. Developing a better understanding of the regulatory effects of PTMs on zDHHC enzymes will provide new insight into the intracellular dynamics of S-acylation and may also highlight novel approaches to modulate S-acylation for clinical gain.


Asunto(s)
Aciltransferasas/metabolismo , Acilación , Aciltransferasas/análisis , Animales , Humanos , Lipoilación , Metilación , Fosforilación , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato , Ubiquitinación
8.
J Biol Chem ; 295(21): 7501-7515, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32317281

RESUMEN

S-Acylation of the SNARE protein SNAP25 (synaptosome-associated protein of 25 kDa) is mediated by a subset of Golgi zinc finger DHHC-type palmitoyltransferase (zDHHC) enzymes, particularly zDHHC17. The ankyrin repeat domain of zDHHC17 interacts with a short linear motif known as the zDHHC ankyrin repeat-binding motif (zDABM) in SNAP25 (112VVASQP117), which is downstream of its S-acylated, cysteine-rich domain (85CGLCVCPC92). Here, we investigated the importance of a flexible linker region (amino acids 93-111, referred to hereafter as the "mini-linker" region) that separates the zDABM and S-acylated cysteines in SNAP25. Shortening the mini-linker did not affect the SNAP25-zDHHC17 interaction but blocked S-acylation. Insertion of additional flexible glycine-serine repeats had no effect on S-acylation, but extended and rigid alanine-proline repeats perturbed it. A SNAP25 mutant in which the mini-linker region was substituted with a flexible glycine-serine linker of the same length underwent efficient S-acylation. Furthermore, this mutant displayed the same intracellular localization as WT SNAP25, indicating that the amino acid composition of the mini-linker is not important for SNAP25 localization. Using the results of previous peptide array experiments, we generated a SNAP25 mutant predicted to have a higher-affinity zDABM. This mutant interacted with zDHHC17 more strongly but was S-acylated with reduced efficiency in HEK293T cells, implying that a lower-affinity interaction of the SNAP25 zDABM with zDHHC17 is optimal for S-acylation efficiency. These results show that amino acids 93-111 in SNAP25 act as a flexible molecular spacer that ensures efficient coupling of the SNAP25-zDHHC17 interaction and S-acylation of SNAP25.


Asunto(s)
Proteína 25 Asociada a Sinaptosomas/metabolismo , Acilación , Secuencias de Aminoácidos , Animales , Células HEK293 , Humanos , Células PC12 , Dominios Proteicos , Ratas , Proteína 25 Asociada a Sinaptosomas/genética
9.
J Cell Sci ; 131(20)2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30254024

RESUMEN

STX19 is an unusual Qa-SNARE as it lacks a C-terminal transmembrane domain. However, it is efficiently targeted to post-Golgi membranes. Here, we set out to determine the intracellular localisation of endogenous STX19 and elucidate the mechanism by which it is targeted to membranes. We have found that a pool of STX19 is localised to tubular recycling endosomes where it colocalises with MICAL-L1 and Rab8 (which has Rab8a and Rab8b forms). Using a combination of genetic, biochemical and cell-based approaches, we have identified that STX19 is S-acylated at its C-terminus and is a substrate for several Golgi-localised S-acyltransferases, suggesting that STX19 is initially S-acylated at the Golgi before trafficking to the plasma membrane and endosomes. Surprisingly, we have found that S-acylation is a key determinant in targeting STX19 to tubular recycling endosomes, suggesting that S-acylation may play a general role in directing proteins to this compartment. In addition, S-acylation also protects STX19 from proteosomal degradation, indicating that S-acylation regulates the function of STX19 at multiple levels.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Acilación/genética , Transporte de Proteínas/genética , Proteínas Q-SNARE/metabolismo , Humanos
10.
J Cell Sci ; 131(18)2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30154213

RESUMEN

The cytokine leukaemia inhibitory factor (LIF) promotes self-renewal of mouse embryonic stem cells (ESCs) through activation of the transcription factor Stat3. However, the contribution of other ancillary pathways stimulated by LIF in ESCs, such as the MAPK and PI3K pathways, is less well understood. We show here that naive-type mouse ESCs express high levels of a novel effector of the MAPK and PI3K pathways. This effector is an isoform of the Gab1 (Grb2-associated binder protein 1) adaptor protein that lacks the N-terminal pleckstrin homology (PH) membrane-binding domain. Although not essential for rapid unrestricted growth of ESCs under optimal conditions, the novel Gab1 variant (Gab1ß) is required for LIF-mediated cell survival under conditions of limited nutrient availability. This enhanced survival is absolutely dependent upon a latent palmitoylation site that targets Gab1ß directly to ESC membranes. These results show that constitutive association of Gab1 with membranes through a novel mechanism promotes LIF-dependent survival of murine ESCs in nutrient-poor conditions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Madre Embrionarias/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Animales , Células Cultivadas , Transducción de Señal
11.
Proc Natl Acad Sci U S A ; 114(8): E1365-E1374, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28167757

RESUMEN

S-acylation is a major posttranslational modification, catalyzed by the zinc finger DHHC domain containing (zDHHC) enzyme family. S-acylated proteins can be modified by different fatty acids; however, very little is known about how zDHHC enzymes contribute to acyl chain heterogeneity. Here, we used fatty acid-azide/alkyne labeling of mammalian cells, showing their transformation into acyl-CoAs and subsequent click chemistry-based detection, to demonstrate that zDHHC enzymes have marked differences in their fatty acid selectivity. This difference in selectivity was apparent even for highly related enzymes, such as zDHHC3 and zDHHC7, which displayed a marked difference in their ability to use C18:0 acyl-CoA as a substrate. Furthermore, we identified isoleucine-182 in transmembrane domain 3 of zDHHC3 as a key determinant in limiting the use of longer chain acyl-CoAs by this enzyme. This study uncovered differences in the fatty acid selectivity profiles of cellular zDHHC enzymes and mapped molecular determinants governing this selectivity.


Asunto(s)
Aciltransferasas/metabolismo , Ácidos Grasos/metabolismo , Acilcoenzima A/metabolismo , Acilación/fisiología , Secuencia de Aminoácidos , Animales , Línea Celular , Química Clic/métodos , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Especificidad por Sustrato/fisiología , Dedos de Zinc/fisiología
12.
J Biol Chem ; 292(42): 17190-17202, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28882895

RESUMEN

zDHHC S-acyltransferases are enzymes catalyzing protein S-acylation, a common post-translational modification on proteins frequently affecting their membrane targeting and trafficking. The ankyrin repeat (AR) domain of zDHHC17 (HIP14) and zDHHC13 (HIP14L) S-acyltransferases, which is involved in both substrate recruitment and S-acylation-independent functions, was recently shown to bind at least six proteins, by specific recognition of a consensus sequence in them. To further refine the rules governing binding to the AR of zDHHC17, we employed peptide arrays based on zDHHC AR-binding motif (zDABM) sequences of synaptosomal-associated protein 25 (SNAP25) and cysteine string protein α (CSPα). Quantitative comparisons of the binding preferences of 400 peptides allowed us to construct a position-specific scoring matrix (PSSM) for zDHHC17 AR binding, with which we predicted and subsequently validated many putative zDHHC17 interactors. We identified 95 human zDABM sequences with unexpected versatility in amino acid usage; these sequences were distributed among 90 proteins, of which 62 have not been previously implicated in zDHHC17/13 binding. These zDABM-containing proteins included all family members of the SNAP25, sprouty, cornifelin, ankyrin, and SLAIN-motif containing families; seven endogenous Gag polyproteins sharing the same binding sequence; and several proteins involved in cytoskeletal organization, cell communication, and regulation of signaling. A dozen of the zDABM-containing proteins had more than one zDABM sequence, whereas isoform-specific binding to the AR of zDHHC17 was identified for the Ena/VASP-like protein. The large number of zDABM sequences within the human proteome suggests that zDHHC17 may be an interaction hub regulating many cellular processes.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteoma/metabolismo , Aciltransferasas/química , Proteínas Adaptadoras Transductoras de Señales/química , Repetición de Anquirina , Línea Celular , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/química , Péptidos/química , Péptidos/metabolismo , Análisis por Matrices de Proteínas/métodos , Unión Proteica , Proteoma/química , Proteína 25 Asociada a Sinaptosomas/química , Proteína 25 Asociada a Sinaptosomas/metabolismo
13.
Mol Cell Neurosci ; 85: 235-246, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28768144

RESUMEN

The S-acyltransferase zDHHC2 mediates dynamic S-acylation of PSD95 and AKAP79/150, which impacts synaptic targeting of AMPA receptors. zDHHC2 is responsive to synaptic activity and catalyses the increased S-acylation of PSD95 that occurs following action potential blockade or application of ionotropic glutamate receptor antagonists. These treatments have been proposed to increase plasma membrane delivery of zDHHC2 via an endosomal cycling pathway, enhancing substrate accessibility. To generate an improved understanding of zDHHC2 trafficking and how this might be regulated by neuronal activity, we searched for intramolecular signals that regulate enzyme localisation. Two signals were mapped to the C-terminal tail of zDHHC2: a non-canonical dileucine motif [SxxxLL] and a downstream NP motif. Mutation of these signals enhanced plasma membrane accumulation of zDHHC2 in both neuroendocrine PC12 cells and rat hippocampal neurons, consistent with reduced endocytic retrieval. Furthermore, mutation of these signals also increased accumulation of the enzyme in neurites. Interestingly, several threonine and serine residues are adjacent to these sorting motifs and analysis of phospho-mimetic mutants highlighted a potential role for phosphorylation in regulating the efficacy of these signals. This study offers new molecular insight into the signals that determine zDHHC2 localisation and highlights a potential mechanism to regulate these trafficking signals.


Asunto(s)
Aciltransferasas/metabolismo , Células Neuroendocrinas/metabolismo , Neuronas/metabolismo , Animales , Hipocampo/metabolismo , Espacio Intracelular/metabolismo , Células PC12 , Procesamiento Proteico-Postraduccional/fisiología , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley
14.
Biochem Soc Trans ; 45(3): 751-758, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28620036

RESUMEN

S-acylation is a reversible lipid modification occurring on cysteine residues mediated by a family of membrane-bound 'zDHHC' enzymes. S-acylation predominantly results in anchoring of soluble proteins to membrane compartments or in the trafficking of membrane proteins to different compartments. Recent work has shown that although S-acylation of some proteins may involve very weak interactions with zDHHC enzymes, a pool of zDHHC enzymes exhibit strong and specific interactions with substrates, thereby recruiting them for S-acylation. For example, the ankyrin-repeat domains of zDHHC17 and zDHHC13 interact specifically with unstructured consensus sequences present in some proteins, thus contributing to substrate specificity of these enzymes. In addition to this new information on zDHHC enzyme protein substrate specificity, recent work has also identified marked differences in selectivity of zDHHC enzymes for acyl-CoA substrates and has started to unravel the underlying molecular basis for this lipid selectivity. This review will focus on the protein and acyl-CoA selectivity of zDHHC enzymes.


Asunto(s)
Aciltransferasas/metabolismo , Acilación , Animales , Cisteína/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Dominios y Motivos de Interacción de Proteínas , Especificidad por Sustrato
15.
J Biol Chem ; 290(36): 21939-50, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26198635

RESUMEN

S-Acylation is a major post-translational modification affecting several cellular processes. It is particularly important for neuronal functions. This modification is catalyzed by a family of transmembrane S-acyltransferases that contain a conserved zinc finger DHHC (zDHHC) domain. Typically, eukaryote genomes encode for 7-24 distinct zDHHC enzymes, with two members also harboring an ankyrin repeat (AR) domain at their cytosolic N termini. The AR domain of zDHHC enzymes is predicted to engage in numerous interactions and facilitates both substrate recruitment and S-acylation-independent functions; however, the sequence/structural features recognized by this module remain unknown. The two mammalian AR-containing S-acyltransferases are the Golgi-localized zDHHC17 and zDHHC13, also known as Huntingtin-interacting proteins 14 and 14-like, respectively; they are highly expressed in brain, and their loss in mice leads to neuropathological deficits that are reminiscent of Huntington's disease. Here, we report that zDHHC17 and zDHHC13 recognize, via their AR domain, evolutionary conserved and closely related sequences of a [VIAP][VIT]XXQP consensus in SNAP25, SNAP23, cysteine string protein, Huntingtin, cytoplasmic linker protein 3, and microtubule-associated protein 6. This novel AR-binding sequence motif is found in regions predicted to be unstructured and is present in a number of zDHHC17 substrates and zDHHC17/13-interacting S-acylated proteins. This is the first study to identify a motif recognized by AR-containing zDHHCs.


Asunto(s)
Aciltransferasas/genética , Secuencias de Aminoácidos/genética , Repetición de Anquirina/genética , Dedos de Zinc/genética , Acilación , Aciltransferasas/clasificación , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Western Blotting , Bovinos , Células HEK293 , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Proteína Huntingtina , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Filogenia , Unión Proteica , Ratas , Homología de Secuencia de Aminoácido , Proteína 25 Asociada a Sinaptosomas/genética , Proteína 25 Asociada a Sinaptosomas/metabolismo
16.
Trends Biochem Sci ; 36(5): 245-53, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21388813

RESUMEN

S-palmitoylation is a reversible post-translational modification that occurs on diverse cellular proteins. Palmitoylation can affect proteins in many different ways, including regulating membrane attachment, intracellular trafficking, and membrane micro-localisation. Intracellular palmitoylation reactions are mediated by a family of recently identified aspartate-histidine-histidine-cysteine (DHHC) palmitoyl transferases. More than 20 DHHC proteins are encoded by mammalian genomes, and there is now a major effort to identify DHHC-substrate pairings and to determine how interaction specificity is encoded. Recent studies have highlighted how DHHC proteins regulate cell function and influence physiology and pathophysiology.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Familia de Multigenes , Ácido Palmítico/metabolismo , Aciltransferasas/genética , Secuencia de Aminoácidos , Animales , Humanos , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Especificidad por Sustrato
17.
Biochem Soc Trans ; 43(2): 217-21, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25849920

RESUMEN

The discovery of the zDHHC family of S-acyltransferase enzymes has been one of the major breakthroughs in the S-acylation field. Now, more than a decade since their discovery, major questions centre on profiling the substrates of individual zDHHC enzymes (there are 24 ZDHHC genes and several hundred S-acylated proteins), defining the mechanisms of enzyme-substrate specificity and unravelling the importance of this enzyme family for cellular physiology and pathology.


Asunto(s)
Acilación/genética , Aciltransferasas/genética , Aciltransferasas/metabolismo , Humanos , Familia de Multigenes/genética , Especificidad por Sustrato
18.
J Pathol ; 233(1): 4-6, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24615251

RESUMEN

S-acylation (also known as palmitoylation) is a major post-translational protein modification in all eukaryotic cells, involving the attachment of fatty acids onto cysteine residues. A variety of structural and signalling proteins are modified in this way, affecting their stability, membrane association and intracellular targeting. The enzymes that mediate S-acylation are encoded by genes belonging to the large (> 20 genes) ZDHHC family. The importance of these enzymes for normal physiological function is highlighted by their links to a diverse range of disease states, including neurological disorders, such as Huntington's disease, schizophrenia and intellectual disability, and diabetes and cancer. The recent study by Yeste-Velasco et al published in the Journal of Pathology highlights a novel tumour suppressor function for the zDHHC family: expression of zDHHC14 is decreased in testicular germ cell tumours, prostate cancer and a variety of other cancer types. This important finding further emphasizes the emerging clinical significance of the zDHHC family of S-acylation enzymes.


Asunto(s)
Aciltransferasas/genética , Genes Supresores de Tumor , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de la Próstata/genética , Neoplasias Testiculares/genética , Animales , Humanos , Masculino
19.
Chem Sci ; 15(32): 12845-12855, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39148806

RESUMEN

Protein palmitoylation or S-acylation has emerged as a key regulator of cellular processes. Increasing evidence shows that this modification is not restricted to palmitate but it can include additional fatty acids, raising the possibility that differential S-acylation contributes to the fine-tuning of protein activity. However, methods to profile the acyl moieties attached to proteins are scarce. Herein, we report a method for the identification and quantification of lipids bound to proteins that relies on hydroxylamine treatment and mass spectrometry analysis of fatty acid hydroxamates. This method has enabled unprecedented and extensive profiling of the S-acylome in different cell lines and tissues and has shed light on the substrate specificity of some S-acylating enzymes. Moreover, we could extend it to quantify also the acyl-CoAs, which are thioesters formed between a fatty acid and a coenzyme A, overcoming many of the previously described challenges for the detection of such species. Importantly, the simultaneous analysis of the lipid fraction and the proteome allowed us to establish, for the first time, a direct correlation between the endogenous levels of acyl-CoAs and the S-acylation profile of its proteome.

20.
J Biol Chem ; 287(44): 37330-9, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22902780

RESUMEN

Recently, mutations in the DNAJC5 gene encoding cysteine-string protein α (CSPα) were identified to cause the neurodegenerative disorder adult-onset neuronal ceroid lipofuscinosis. The disease-causing mutations (L115R or ΔL116) occur within the cysteine-string domain, a region of the protein that is post-translationally modified by extensive palmitoylation. Here we demonstrate that L115R and ΔL116 mutant proteins are mistargeted in neuroendocrine cells and form SDS-resistant aggregates, concordant with the properties of other mutant proteins linked to neurodegenerative disorders. The mutant aggregates are membrane-associated and incorporate palmitate. Indeed, co-expression of palmitoyltransferase enzymes promoted the aggregation of the CSPα mutants, and chemical depalmitoylation solubilized the aggregates, demonstrating that aggregation is induced and maintained by palmitoylation. In agreement with these observations, SDS-resistant CSPα aggregates were present in brain samples from patients carrying the L115R mutation and were depleted by chemical depalmitoylation. In summary, this study identifies a novel interplay between genetic mutations and palmitoylation in driving aggregation of CSPα mutant proteins. We propose that this palmitoylation-induced aggregation of mutant CSPα proteins may underlie the development of adult-onset neuronal ceroid lipofuscinosis in affected families.


Asunto(s)
Proteínas del Choque Térmico HSP40/genética , Lipoilación , Proteínas de la Membrana/genética , Mutación Missense , Lipofuscinosis Ceroideas Neuronales/genética , Procesamiento Proteico-Postraduccional , Aciltransferasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Corteza Cerebral/metabolismo , Células HEK293 , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Lipofuscinosis Ceroideas Neuronales/metabolismo , Células PC12 , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA