Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Annu Rev Cell Dev Biol ; 30: 317-36, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25062359

RESUMEN

Localized ion fluxes at the plasma membrane provide electrochemical gradients at the cell surface that contribute to cell polarization, migration, and division. Ion transporters, local pH gradients, membrane potential, and organization are emerging as important factors in cell polarization mechanisms. The power of electrochemical effects is illustrated by the ability of exogenous electric fields to redirect polarization in cells ranging from bacteria, fungi, and amoebas to keratocytes and neurons. Electric fields normally surround cells and tissues and thus have been proposed to guide cell polarity in development, cancer, and wound healing. Recent studies on electric field responses in model systems and development of new biosensors provide new avenues to dissect molecular mechanisms. Here, we review recent advances that bring molecular understanding of how electrochemistry contributes to cell polarity in various contexts.


Asunto(s)
Polaridad Celular/fisiología , Animales , Aniones/metabolismo , Cationes/metabolismo , División Celular , Movimiento Celular , Forma de la Célula , Dictyostelium/citología , Electroquímica , Campos Electromagnéticos , Peces , Hongos/citología , Concentración de Iones de Hidrógeno , Líquido Intracelular/química , Transporte Iónico/fisiología , Potenciales de la Membrana/fisiología , Regeneración , Electricidad Estática , Cicatrización de Heridas
2.
Cell ; 144(3): 414-26, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21295701

RESUMEN

The spatial organization of cells depends on their ability to sense their own shape and size. Here, we investigate how cell shape affects the positioning of the nucleus, spindle and subsequent cell division plane. To manipulate geometrical parameters in a systematic manner, we place individual sea urchin eggs into microfabricated chambers of defined geometry (e.g., triangles, rectangles, and ellipses). In each shape, the nucleus is positioned at the center of mass and is stretched by microtubules along an axis maintained through mitosis and predictive of the future division plane. We develop a simple computational model that posits that microtubules sense cell geometry by probing cellular space and orient the nucleus by exerting pulling forces that scale to microtubule length. This model quantitatively predicts division-axis orientation probability for a wide variety of cell shapes, even in multicellular contexts, and estimates scaling exponents for length-dependent microtubule forces.


Asunto(s)
División Celular , Forma de la Célula , Erizos de Mar/citología , Animales , Núcleo Celular/metabolismo , Interfase , Microtúbulos/metabolismo , Mitosis , Modelos Biológicos , Huso Acromático/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(25): e2217737120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307463

RESUMEN

In nature, several ciliated protists possess the remarkable ability to execute ultrafast motions using protein assemblies called myonemes, which contract in response to Ca2+ ions. Existing theories, such as actomyosin contractility and macroscopic biomechanical latches, do not adequately describe these systems, necessitating development of models to understand their mechanisms. In this study, we image and quantitatively analyze the contractile kinematics observed in two ciliated protists (Vorticella sp. and Spirostomum sp.), and, based on the mechanochemistry of these organisms, we propose a minimal mathematical model that reproduces our observations as well as those published previously. Analyzing the model reveals three distinct dynamic regimes, differentiated by the rate of chemical driving and the importance of inertia. We characterize their unique scaling behaviors and kinematic signatures. Besides providing insights into Ca2+-powered myoneme contraction in protists, our work may also inform the rational design of ultrafast bioengineered systems such as active synthetic cells.


Asunto(s)
Citoesqueleto de Actina , Células Artificiales , Actomiosina , Ingeniería Biomédica , Adenosina Trifosfato
4.
Nature ; 559(7715): 617-621, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30022160

RESUMEN

Gram-negative bacteria possess a complex cell envelope that consists of a plasma membrane, a peptidoglycan cell wall and an outer membrane. The envelope is a selective chemical barrier1 that defines cell shape2 and allows the cell to sustain large mechanical loads such as turgor pressure3. It is widely believed that the covalently cross-linked cell wall underpins the mechanical properties of the envelope4,5. Here we show that the stiffness and strength of Escherichia coli cells are largely due to the outer membrane. Compromising the outer membrane, either chemically or genetically, greatly increased deformation of the cell envelope in response to stretching, bending and indentation forces, and induced increased levels of cell lysis upon mechanical perturbation and during L-form proliferation. Both lipopolysaccharides and proteins contributed to the stiffness of the outer membrane. These findings overturn the prevailing dogma that the cell wall is the dominant mechanical element within Gram-negative bacteria, instead demonstrating that the outer membrane can be stiffer than the cell wall, and that mechanical loads are often balanced between these structures.


Asunto(s)
Membrana Celular/metabolismo , Pared Celular/metabolismo , Bacterias Gramnegativas/citología , Bacterias Gramnegativas/metabolismo , Membrana Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Detergentes/farmacología , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Bacterias Gramnegativas/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Soporte de Peso
5.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34117124

RESUMEN

Environmental fluctuations are a common challenge for single-celled organisms; enteric bacteria such as Escherichia coli experience dramatic changes in nutrient availability, pH, and temperature during their journey into and out of the host. While the effects of altered nutrient availability on gene expression and protein synthesis are well known, their impacts on cytoplasmic dynamics and cell morphology have been largely overlooked. Here, we discover that depletion of utilizable nutrients results in shrinkage of E. coli's inner membrane from the cell wall. Shrinkage was accompanied by an ∼17% reduction in cytoplasmic volume and a concurrent increase in periplasmic volume. Inner membrane retraction after sudden starvation occurred almost exclusively at the new cell pole. This phenomenon was distinct from turgor-mediated plasmolysis and independent of new transcription, translation, or canonical starvation-sensing pathways. Cytoplasmic dry-mass density increased during shrinkage, suggesting that it is driven primarily by loss of water. Shrinkage was reversible: upon a shift to nutrient-rich medium, expansion started almost immediately at a rate dependent on carbon source quality. A robust entry into and recovery from shrinkage required the Tol-Pal system, highlighting the importance of envelope coupling during shrinkage and recovery. Klebsiella pneumoniae also exhibited shrinkage when shifted to carbon-free conditions, suggesting a conserved phenomenon. These findings demonstrate that even when Gram-negative bacterial growth is arrested, cell morphology and physiology are still dynamic.


Asunto(s)
Citoplasma/fisiología , Escherichia coli/fisiología , Carbono/deficiencia , Carbono/farmacología , Citoplasma/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular/efectos de los fármacos , Nitrógeno/análisis , Fósforo/análisis
6.
Biophys J ; 122(5): 767-783, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36739478

RESUMEN

The cytoplasm is a complex, crowded, actively driven environment whose biophysical characteristics modulate critical cellular processes such as cytoskeletal dynamics, phase separation, and stem cell fate. Little is known about the variance in these cytoplasmic properties. Here, we employed particle-tracking nanorheology on genetically encoded multimeric 40 nm nanoparticles (GEMs) to measure diffusion within the cytoplasm of individual fission yeast (Schizosaccharomyces pombe) cellscells. We found that the apparent diffusion coefficients of individual GEM particles varied over a 400-fold range, while the differences in average particle diffusivity among individual cells spanned a 10-fold range. To determine the origin of this heterogeneity, we developed a Doppelgänger simulation approach that uses stochastic simulations of GEM diffusion that replicate the experimental statistics on a particle-by-particle basis, such that each experimental track and cell had a one-to-one correspondence with their simulated counterpart. These simulations showed that the large intra- and inter-cellular variations in diffusivity could not be explained by experimental variability but could only be reproduced with stochastic models that assume a wide intra- and inter-cellular variation in cytoplasmic viscosity. The simulation combining intra- and inter-cellular variation in viscosity also predicted weak nonergodicity in GEM diffusion, consistent with the experimental data. To probe the origin of this variation, we found that the variance in GEM diffusivity was largely independent of factors such as temperature, the actin and microtubule cytoskeletons, cell-cyle stage, and spatial locations, but was magnified by hyperosmotic shocks. Taken together, our results provide a striking demonstration that the cytoplasm is not "well-mixed" but represents a highly heterogeneous environment in which subcellular components at the 40 nm size scale experience dramatically different effective viscosities within an individual cell, as well as in different cells in a genetically identical population. These findings carry significant implications for the origins and regulation of biological noise at cellular and subcellular levels.


Asunto(s)
Citoesqueleto , Citoplasma , Difusión , Citosol , Simulación por Computador
7.
Biophys J ; 117(9): 1728-1738, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31630810

RESUMEN

Fundamental mechanisms governing cell size control and homeostasis are still poorly understood. The relationship between sizes at division and birth in single cells is used as a metric to categorize the basis of size homeostasis. Cells dividing at a fixed size regardless of birth size (sizer) are expected to show a division-birth slope of zero, whereas cells dividing after growing for a fixed size increment (adder) have an expected slope of +1. These two theoretical values are, however, rarely experimentally observed. For example, rod-shaped fission yeast Schizosaccharomyces pombe cells, which divide at a fixed surface area, exhibit a division-birth slope for cell lengths of 0.25 ± 0.02, significantly different from the expected sizer value of zero. Here, we investigate possible reasons for this discrepancy by developing a mathematical model of sizer control including the relevant sources of variation. Our results support pure sizer control and show that deviation from zero slope is exaggerated by measurement of an inappropriate geometrical quantity (e.g., length instead of area), combined with cell-to-cell radius variability. The model predicts that mutants with greater errors in size sensing or septum positioning paradoxically appear to behave as better sizers. Furthermore, accounting for cell width variability, we show that pure sizer control can in some circumstances reproduce the apparent adder behavior observed in Escherichia coli. These findings demonstrate that analysis of geometric variation can lead to new insights into cell size control.


Asunto(s)
Tamaño de la Célula , Schizosaccharomyces/citología , División Celular Asimétrica , Escherichia coli/citología , Modelos Biológicos
8.
PLoS Biol ; 12(12): e1002029, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25548923

RESUMEN

Cells are naturally surrounded by organized electrical signals in the form of local ion fluxes, membrane potential, and electric fields (EFs) at their surface. Although the contribution of electrochemical elements to cell polarity and migration is beginning to be appreciated, underlying mechanisms are not known. Here we show that an exogenous EF can orient cell polarization in budding yeast (Saccharomyces cerevisiae) cells, directing the growth of mating projections towards sites of hyperpolarized membrane potential, while directing bud emergence in the opposite direction, towards sites of depolarized potential. Using an optogenetic approach, we demonstrate that a local change in membrane potential triggered by light is sufficient to direct cell polarization. Screens for mutants with altered EF responses identify genes involved in transducing electrochemical signals to the polarity machinery. Membrane potential, which is regulated by the potassium transporter Trk1p, is required for polarity orientation during mating and EF response. Membrane potential may regulate membrane charges through negatively charged phosphatidylserines (PSs), which act to position the Cdc42p-based polarity machinery. These studies thus define an electrochemical pathway that directs the orientation of cell polarization.


Asunto(s)
Polaridad Celular , Electricidad , Saccharomycetales/citología , Proteínas de Transporte de Catión/metabolismo , Electroquímica , Lípidos/farmacología , Potenciales de la Membrana , Modelos Biológicos , Optogenética , Fosfatidilserinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/metabolismo
9.
BMC Biol ; 12: 54, 2014 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-25185019

RESUMEN

The rod is a ubiquitous shape adopted by walled cells from diverse organisms ranging from bacteria to fungi to plants. Although rod-like shapes are found in cells of vastly different sizes and are constructed by diverse mechanisms, the geometric similarities among these shapes across kingdoms suggest that there are common evolutionary advantages, which may result from simple physical principles in combination with chemical and physiological constraints. Here, we review mechanisms of constructing rod-shaped cells and the bases of different biophysical models of morphogenesis, comparing and contrasting model organisms in different kingdoms. We then speculate on possible advantages of the rod shape, and suggest strategies for elucidating the relative importance of each of these advantages.


Asunto(s)
Bacterias/citología , Procesos de Crecimiento Celular , Hongos/citología , Pared Celular/metabolismo , Escherichia coli/citología , Modelos Biológicos , Morfogénesis , Schizosaccharomyces/citología
10.
Curr Opin Cell Biol ; 19(1): 88-94, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17194581

RESUMEN

The microtubule cytoskeleton serves as a primary spatial regulator of cell shape. As part of their function, microtubules appear to activate or inhibit the actin cytoskeleton at specific locations at the cell cortex for cell polarization, cell migration and cytokinesis. Recent studies reveal molecular insights into these processes. Regulators of the actin cytoskeleton, such as activators of formin and Rho GTPases, are transported to specific sites on the cortex by riding on the plus ends of microtubules.


Asunto(s)
Actinas/fisiología , Forma de la Célula/fisiología , Citoesqueleto/fisiología , Microtúbulos/fisiología , Animales , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Citocinesis/fisiología , Transporte de Proteínas
11.
Nat Cell Biol ; 8(8): 891-3, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16845379

RESUMEN

In the fission yeast Schizosaccharomyces pombe, cytokinesis is thought to be controlled by the daughter spindle-pole body (SPB) through a regulatory pathway named the septation initiation network (SIN). Here, we demonstrate that laser ablation of both, but not a single SPB, results in failure of cytokinesis. Ablation of only the daughter SPB often leads to activation of the SIN on the mother SPB and successful cytokinesis. Thus, either SPB can drive cytokinesis.


Asunto(s)
Citocinesis/fisiología , Schizosaccharomyces/fisiología , Huso Acromático/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/genética , División Celular/fisiología , Citocinesis/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mutación/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transducción de Señal/fisiología , Huso Acromático/genética
12.
Nat Cell Biol ; 8(10): 1108-13, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16998476

RESUMEN

Self-organization of cellular structures is an emerging principle underlying cellular architecture. Properties of dynamic microtubules and microtubule-binding proteins contribute to the self-assembly of structures such as microtubule asters. In the fission yeast Schizosaccharomyces pombe, longitudinal arrays of cytoplasmic microtubule bundles regulate cell polarity and nuclear positioning. These bundles are thought to be organized from the nucleus at multiple interphase microtubule organizing centres (iMTOCs). Here, we find that microtubule bundles assemble even in cells that lack a nucleus. These bundles have normal organization, dynamics and orientation, and exhibit anti-parallel overlaps in the middle of the cell. The mechanisms that are responsible for formation of these microtubule bundles include cytoplasmic microtubule nucleation, microtubule release from the equatorial MTOC (eMTOC), and the dynamic fusion and splitting of microtubule bundles. Bundle formation and organization are dependent on mto1p (gamma-TUC associated protein), ase1p (PRC1), klp2p (kinesin-14) and tip1p (CLIP-170). Positioning of nuclear fragments and polarity factors by these microtubules illustrates how self-organization of these bundles contributes to establishing global spatial order.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Núcleo Celular , Interfase , Proteínas Asociadas a Microtúbulos/genética , Mitosis , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Huso Acromático
13.
bioRxiv ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37333400

RESUMEN

Walled cells, such as plants, fungi, and bacteria cells, possess a high internal hydrostatic pressure, termed turgor pressure, that drives volume growth and contributes to cell shape determination. Rigorous measurement of turgor pressure, however, remains challenging, and reliable quantitative measurements, even in budding yeast are still lacking. Here, we present a simple and robust experimental approach to access turgor pressure in yeasts based upon the determination of isotonic concentration using protoplasts as osmometers. We propose three methods to identify the isotonic condition - 3D cell volume, cytoplasmic fluorophore intensity, and mobility of a cytGEMs nano-rheology probe - that all yield consistent values. Our results provide turgor pressure estimates of 1.0 ± 0.1 MPa for S. pombe, 0.49 ± 0.01 MPa for S. japonicus, 0.5 ± 0.1 MPa for S. cerevisiae W303a and 0.31 ± 0.03 MPa for S. cerevisiae BY4741. Large differences in turgor pressure and nano-rheology measurements between the S. cerevisiae strains demonstrate how fundamental biophysical parameters can vary even among wildtype strains of the same species. These side-by-side measurements of turgor pressure in multiple yeast species provide critical values for quantitative studies on cellular mechanics and comparative evolution.

14.
Mol Biol Cell ; 34(13): ar133, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37903220

RESUMEN

Walled cells, such as plants, fungi, and bacteria cells, possess a high internal hydrostatic pressure, termed turgor pressure, that drives volume growth and contributes to cell shape determination. Rigorous measurement of turgor pressure, however, remains challenging, and reliable quantitative measurements, even in budding yeast are still lacking. Here, we present a simple and robust experimental approach to access turgor pressure in yeasts based upon the determination of isotonic concentration using protoplasts as osmometers. We propose three methods to identify the isotonic condition - three-dimensional cell volume, cytoplasmic fluorophore intensity, and mobility of a cytGEMs nano-rheology probe - that all yield consistent values. Our results provide turgor pressure estimates of 1.0 ± 0.1 MPa for Schizosaccharomyces pombe, 0.49 ± 0.01 MPa for Schizosaccharomyces japonicus, 0.5 ± 0.1 MPa for Saccharomyces cerevisiae W303a and 0.31 ± 0.03 MPa for Saccharomyces cerevisiae BY4741. Large differences in turgor pressure and nano-rheology measurements between the Saccharomyces cerevisiae strains demonstrate how fundamental biophysical parameters can vary even among wild-type strains of the same species. These side-by-side measurements of turgor pressure in multiple yeast species provide critical values for quantitative studies on cellular mechanics and comparative evolution.


Asunto(s)
Schizosaccharomyces , Saccharomyces cerevisiae , Pared Celular , División Celular , Citoplasma , Presión Osmótica
15.
Dev Cell ; 13(6): 812-27, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18061564

RESUMEN

Many microtubule (MT) structures contain dynamic MTs that are bundled and stabilized in overlapping arrays. CLASPs are conserved MT-binding proteins implicated in the regulation of MT plus ends. Here, we show that the Schizosaccharomyces pombe CLASP, cls1p/peg1p, mediates the stabilization of overlapping MTs within the mitotic spindle and interphase bundles. cls1p localizes to these regions but not to interphase MT plus ends. Inactivation of cls1p leads to the rapid depolymerization of spindle midzone MTs. cls1p also stabilizes a subset of MTs within interphase bundles. cls1p prevents disassembly of the entire microtubule, while still allowing for plus-end growth. It has no measurable effects on MT nucleation, polymerization, catastrophe, or bundling. A direct interaction with ase1p (PRC1/MAP65) targets cls1p to regions of antiparallel MT overlap. These findings show how a MT-stabilizing factor attached to specific sites on MTs can help to generate MT structures that have both dynamic and stable components.


Asunto(s)
Microtúbulos/metabolismo , Mitosis , Proteínas Nucleares/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Inmunoprecipitación , Interfase , Microtúbulos/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiología , Huso Acromático , Técnicas del Sistema de Dos Híbridos
16.
Elife ; 112022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35856499

RESUMEN

The size of the nucleus scales robustly with cell size so that the nuclear-to-cell volume ratio (N/C ratio) is maintained during cell growth in many cell types. The mechanism responsible for this scaling remains mysterious. Previous studies have established that the N/C ratio is not determined by DNA amount but is instead influenced by factors such as nuclear envelope mechanics and nuclear transport. Here, we developed a quantitative model for nuclear size control based upon colloid osmotic pressure and tested key predictions in the fission yeast Schizosaccharomyces pombe. This model posits that the N/C ratio is determined by the numbers of macromolecules in the nucleoplasm and cytoplasm. Osmotic shift experiments showed that the fission yeast nucleus behaves as an ideal osmometer whose volume is primarily dictated by osmotic forces. Inhibition of nuclear export caused accumulation of macromolecules in the nucleoplasm, leading to nuclear swelling. We further demonstrated that the N/C ratio is maintained by a homeostasis mechanism based upon synthesis of macromolecules during growth. These studies demonstrate the functions of colloid osmotic pressure in intracellular organization and size control.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
17.
Dev Cell ; 57(4): 466-479.e6, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35231427

RESUMEN

The cytoplasm is a crowded, visco-elastic environment whose physical properties change according to physiological or developmental states. How the physical properties of the cytoplasm impact cellular functions in vivo remains poorly understood. Here, we probe the effects of cytoplasmic concentration on microtubules by applying osmotic shifts to fission yeast, moss, and mammalian cells. We show that the rates of both microtubule polymerization and depolymerization scale linearly and inversely with cytoplasmic concentration; an increase in cytoplasmic concentration decreases the rates of microtubule polymerization and depolymerization proportionally, whereas a decrease in cytoplasmic concentration leads to the opposite. Numerous lines of evidence indicate that these effects are due to changes in cytoplasmic viscosity rather than cellular stress responses or macromolecular crowding per se. We reconstituted these effects on microtubules in vitro by tuning viscosity. Our findings indicate that, even in normal conditions, the viscosity of the cytoplasm modulates the reactions that underlie microtubule dynamic behaviors.


Asunto(s)
Citoplasma/metabolismo , Microtúbulos/metabolismo , Polimerizacion , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Núcleo Celular/metabolismo , Interfase/fisiología , Huso Acromático/metabolismo
18.
Nat Cell Biol ; 5(4): 294-9, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12669083

RESUMEN

Budding and fission yeast serve as genetic model organisms for the study of the molecular mechanisms of cell polarity in single cells. Similar to other polarized eukaryotic cells, yeast cells have polarity programmes that regulate where they grow and divide. Here, we describe recent advances in defining the proteins that establish cell polarity and the numerous molecular interactions that may link these factors to the actin cytoskeleton. As many of these components are identified, a comprehensive understanding of complex pathways is beginning to emerge.


Asunto(s)
División Celular/fisiología , Polaridad Celular/fisiología , Células Eucariotas/metabolismo , Proteínas Fúngicas/metabolismo , Levaduras/metabolismo , Animales , Citoesqueleto/genética , Células Eucariotas/citología , Proteínas Fúngicas/genética , Humanos , Modelos Biológicos , Transducción de Señal/genética , Levaduras/citología , Levaduras/genética
19.
Nat Cell Biol ; 6(12): 1245-6, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15573098

RESUMEN

Cells of the fission yeast Schizosaccharomyces pombe have a checkpoint mechanism that reportedly monitors the orientation of the mitotic spindle. Astral microtubules in pre-anaphase spindles are thought to contact the contractile actin ring at the plasma membrane in order to rotate the spindle and to sense spindle orientation. Here, we show that these microtubules are actually inside the nuclear envelope.


Asunto(s)
Estructuras del Núcleo Celular/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Schizosaccharomyces/metabolismo , Huso Acromático/metabolismo , Actinas/metabolismo , Anafase/fisiología , Biomarcadores , Estructuras del Núcleo Celular/ultraestructura , Polaridad Celular/fisiología , Citoplasma/metabolismo , Citoplasma/ultraestructura , Genes cdc/fisiología , Microtúbulos/ultraestructura , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestructura , Proteínas Recombinantes de Fusión , Schizosaccharomyces/ultraestructura , Huso Acromático/ultraestructura , Factores de Tiempo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
20.
Nat Cell Biol ; 6(11): 1142-4, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15517003

RESUMEN

Many membrane processes occur in discrete membrane domains containing lipid rafts, but little is known about how these domains are organized and positioned. In the fission yeast Schizosaccharomyces pombe, a sterol-rich membrane domain forms at the cell-division site. Here, we show that formation of this membrane domain is independent of the contractile actin ring, septation, mid1p and the septins, and also requires cdc15p, an essential contractile ring protein that associates with lipid rafts. cdc15 mutants have membrane domains in the shape of spirals. Overexpression of cdc15p in interphase cells induces abnormal membrane domain formation in an actin-independent manner. We propose that cdc15p functions to organize lipid rafts at the cleavage site for cytokinesis.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Ciclo Celular/fisiología , Proteínas de Unión al GTP/fisiología , Schizosaccharomyces/citología , Esteroles/metabolismo , Membrana Celular/metabolismo , Schizosaccharomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA