RESUMEN
Mechanochemical reactions achieved by processes such as milling and grinding are promising alternatives to traditional solution-based chemistry. This approach not only eliminates the need for large amounts of solvents, thereby reducing waste generation, but also finds applications in chemical and materials synthesis. The focus of this study is on the synthesis of quinazolinone derivatives by ball milling, in particular evodiamine and rutaecarpine analogues. These compounds are of interest due to their diverse bioactivities, including potential anticancer properties. The study examines the reactions carried out under ball milling conditions, emphasizing their efficiency in terms of shorter reaction times and reduced environmental impact compared to conventional methods. The ball milling reaction of evodiamine and rutaecarpine analogues resulted in yields of 63-78% and 22-61%, respectively. In addition, these compounds were tested for their cytotoxic activity, and evodiamine exhibited an IC50 of 0.75 ± 0.04 µg mL-1 against the Ca9-22 cell line. At its core, this research represents a new means to synthesise these compounds, providing a more environmentally friendly and sustainable alternative to traditional approaches.
Asunto(s)
Alcaloides Indólicos , Quinazolinonas , Quinazolinas/químicaRESUMEN
Excavatolide C (EXCC), a marine coral-derived compound, exhibits an antiproliferation effect on bladder cancer cells. The present study evaluated the improvement in the antiproliferation ability of EXCC by co-treatment with cisplatin in bladder cancer cells. EXCC/cisplatin (12.5 and 1 µg/mL) showed higher antiproliferation effects on bladder cancer cells than single treatments (EXCC or cisplatin alone) in the 48 h ATP assay. EXCC/cisplatin also enhanced the increase in subG1, annexin V-mediated apoptosis, and activation of poly (ADP-ribose) polymerase (PARP) and several caspases (caspases 3, 8, and 9) compared to the single treatments. Cellular and mitochondrial oxidative stress was enhanced with EXCC/cisplatin compared to the single treatments according to analyses of reactive oxygen species (ROS), mitochondrial superoxide, and mitochondrial membrane potential; in addition, cellular antioxidants, such as glutathione (GSH), and the mRNA expressions of antioxidant signaling genes (catalase and NFE2-like bZIP transcription factor 2) were downregulated. EXCC/cisplatin treatment produced more DNA damage than the single treatments, as indicated by γH2AX and 8-hydroxy-2'-deoxyguanosine levels. Moreover, several DNA repair genes for homologous recombination (HR) and non-homologous end joining (NHEJ) were downregulated in EXCC/cisplatin compared to others. The addition of the GSH precursor N-acetylcysteine, which has ROS scavenging activity, attenuated all EXCC/cisplatin-induced changes. Notably, EXCC/cisplatin showed lower antiproliferation, apoptosis, ROS induction, GSH depletion, and γH2AX DNA damage in normal cells than in bladder cancer cells. Therefore, the co-treatment of EXCC/cisplatin reduces the proliferation of bladder cancer cells via oxidative stress-mediated mechanisms with normal cell safety.
Asunto(s)
Cisplatino , Neoplasias de la Vejiga Urinaria , Humanos , Especies Reactivas de Oxígeno/metabolismo , Cisplatino/farmacología , Línea Celular Tumoral , Proliferación Celular , Apoptosis , Antioxidantes/farmacología , Daño del ADN , Caspasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genéticaRESUMEN
Octocoral of the genus Clavularia is a kind of marine invertebrate possessing abundant cytotoxic secondary metabolites, such as prostanoids and dolabellanes. In our continuous natural product study of C. spp., two previously undescribed prostanoids [clavulone I-15-one (1) and 12-O-deacetylclavulone I (2)] and eleven known analogs (3-13) were identified. The structures of these new compounds were elucidated based on analysis of their 1D and 2D NMR, HRESIMS, and IR data. Additionally, all tested prostanoids (1 and 3-13) showed potent cytotoxic activities against the human oral cancer cell line (Ca9-22). The major compound 3 showed cytotoxic activity against the Ca9-22 cells with the IC50 value of 2.11 ± 0.03 µg/mL, which echoes the cytotoxic effect of the coral extract. In addition, in silico tools were used to predict the possible effects of isolated compounds on human tumor cell lines and nitric oxide production, as well as the pharmacological potentials.
Asunto(s)
Antozoos , Antineoplásicos , Prostaglandinas , Humanos , Antozoos/química , Animales , Línea Celular Tumoral , Prostaglandinas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Óxido Nítrico/metabolismo , Concentración 50 Inhibidora , Organismos Acuáticos , Estructura MolecularRESUMEN
Phthalates are widespread and commonly used plasticizers that lead to adverse health effects. Several natural products provide a protective effect against phthalates. Moreover, microRNAs (miRNAs) are regulated by natural products and phthalates. Therefore, miRNAs' impacts and potential targets may underlie the mechanism of phthalates. However, the relationship between phthalate-modulated miRNAs and phthalate protectors derived from natural products is poorly understood and requires further supporting information. In this paper, we review the adverse effects and potential targets of phthalates on reproductive systems as well as cancer and non-cancer responses. Information on natural products that attenuate the adverse effects of phthalates is retrieved through a search of Google Scholar and the miRDB database. Moreover, information on miRNAs that are upregulated or downregulated in response to phthalates is collected, along with their potential targets. The interplay between phthalate-modulated miRNAs and natural products is established. Overall, this review proposes a straightforward pathway showing how phthalates modulate different miRNAs and targets and cause adverse effects, which are partly attenuated by several natural products, thereby providing a direction for investigating the natural product-miRNA-target axis against phthalate-induced effects.
Asunto(s)
Productos Biológicos , MicroARNs , Ácidos Ftálicos , Ácidos Ftálicos/toxicidad , Humanos , Animales , Plastificantes/toxicidad , Contaminantes Ambientales/toxicidadRESUMEN
Increased neddylation benefits the survival of several types of cancer cells. The inhibition of neddylation has the potential to exert anticancer effects but is rarely assessed in oral cancer cells. This study aimed to investigate the antiproliferation potential of a neddylation inhibitor MLN4924 (pevonedistat) for oral cancer cells. MLN4924 inhibited the cell viability of oral cancer cells more than that of normal oral cells (HGF-1) with 100% viability, that is, IC50 values of oral cancer cells (CAL 27, OC-2, and Ca9-22) are 1.8, 1.4, and 1.9 µM. MLN4924 caused apoptotic changes such as the subG1 accumulation, activation of annexin V, pancaspase, and caspases 3/8/9 of oral cancer cells at a greater rate than in normal oral cells. MLN4924 induced greater oxidative stress in oral cancer cells compared to normal cells by upregulating reactive oxygen species and mitochondrial superoxide and depleting the mitochondrial membrane potential and glutathione. In oral cancer cells, preferential inductions also occurred for DNA damage (γH2AX and 8-oxo-2'-deoxyguanosine). Therefore, this investigation demonstrates that MLN4924 is a potential anti-oral-cancer agent showing preferential inhibition of apoptosis and promotion of DNA damage with fewer cytotoxic effects on normal cells.
Asunto(s)
Apoptosis , Neoplasias de la Boca , Humanos , Proliferación Celular , Línea Celular Tumoral , Neoplasias de la Boca/metabolismoRESUMEN
Protein phosphatase 2A (PP2A), a heterotrimeric holoenzyme (scaffolding, catalytic, and regulatory subunits), regulates dephosphorylation for more than half of serine/threonine phosphosites and exhibits diverse cellular functions. Although several studies on natural products and miRNAs have emphasized their impacts on PP2A regulation, their connections lack systemic organization. Moreover, only part of the PP2A family has been investigated. This review focuses on the PP2A-modulating effects of natural products and miRNAs' interactions with potential PP2A targets in cancer and non-cancer cells. PP2A-modulating natural products and miRNAs were retrieved through a literature search. Utilizing the miRDB database, potential PP2A targets of these PP2A-modulating miRNAs for the whole set (17 members) of the PP2A family were retrieved. Finally, PP2A-modulating natural products and miRNAs were linked via a literature search. This review provides systemic directions for assessing natural products and miRNAs relating to the PP2A-modulating functions in cancer and disease treatments.
Asunto(s)
Productos Biológicos , MicroARNs , Neoplasias , Proteína Fosfatasa 2 , MicroARNs/metabolismo , MicroARNs/genética , Proteína Fosfatasa 2/metabolismo , Productos Biológicos/farmacología , Humanos , Neoplasias/genética , Neoplasias/tratamiento farmacológico , AnimalesRESUMEN
Antioral cancer drugs need a greater antiproliferative impact on cancer than on normal cells. Demethoxymurrapanine (DEMU) inhibits proliferation in several cancer cells, but an in-depth investigation was necessary. This study evaluated the proliferation-modulating effects of DEMU, focusing on oral cancer and normal cells. DEMU (0, 2, 3, and 4 µg/mL) at 48 h treatments inhibited the proliferation of oral cancer cells (the cell viability (%) for Ca9-22 cells was 100.0 ± 2.2, 75.4 ± 5.6, 26.0 ± 3.8, and 15.4 ± 1.4, and for CAL 27 cells was 100.0 ± 9.4, 77.2 ± 5.9, 57.4 ± 10.7, and 27.1 ± 1.1) more strongly than that of normal cells (the cell viability (%) for S-G cells was 100.0 ± 6.6, 91.0 ± 4.6, 95.0 ± 2.6, and 95.8 ± 5.5), although this was blocked by the antioxidant N-acetylcysteine. The presence of oxidative stress was evidenced by the increase of reactive oxygen species and mitochondrial superoxide and the downregulation of the cellular antioxidant glutathione in oral cancer cells, but these changes were minor in normal cells. DEMU also caused greater induction of the subG1 phase, extrinsic and intrinsic apoptosis (annexin V and caspases 3, 8, and 9), and DNA damage (γH2AX and 8-hydroxy-2-deoxyguanosine) in oral cancer than in normal cells. N-acetylcysteine attenuated all these DEMU-induced changes. Together, these data demonstrate the preferential antiproliferative function of DEMU in oral cancer cells, with the preferential induction of oxidative stress, apoptosis, and DNA damage in these cancer cells, and low cytotoxicity toward normal cells.
Asunto(s)
Alcaloides , Neoplasias de la Boca , Humanos , Antioxidantes/farmacología , Acetilcisteína/farmacología , Estrés Oxidativo , Especies Reactivas de Oxígeno , Neoplasias de la Boca/tratamiento farmacológico , Apoptosis , Proliferación Celular , Alcaloides/farmacología , Alcaloides/uso terapéutico , Indoles/farmacología , Línea Celular Tumoral , Daño del ADNRESUMEN
Ferroptosis, which comprises iron-dependent cell death, is crucial in cancer and non-cancer treatments. Exosomes, the extracellular vesicles, may deliver biomolecules to regulate disease progression. The interplay between ferroptosis and exosomes may modulate cancer development but is rarely investigated in natural product treatments and their modulating miRNAs. This review focuses on the ferroptosis-modulating effects of natural products and miRNAs concerning their participation in ferroptosis and exosome biogenesis (secretion and assembly)-related targets in cancer and non-cancer cells. Natural products and miRNAs with ferroptosis-modulating effects were retrieved and organized. Next, a literature search established the connection of a panel of ferroptosis-modulating genes to these ferroptosis-associated natural products. Moreover, ferroptosis-associated miRNAs were inputted into the miRNA database (miRDB) to bioinformatically search the potential targets for the modulation of ferroptosis and exosome biogenesis. Finally, the literature search provided a connection between ferroptosis-modulating miRNAs and natural products. Consequently, the connections from ferroptosis-miRNA-exosome biogenesis to natural product-based anticancer treatments are well-organized. This review sheds light on the research directions for integrating miRNAs and exosome biogenesis into the ferroptosis-modulating therapeutic effects of natural products on cancer and non-cancer diseases.
Asunto(s)
Productos Biológicos , Exosomas , Ferroptosis , MicroARNs , Neoplasias , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Humanos , Exosomas/metabolismo , Exosomas/genética , MicroARNs/genética , MicroARNs/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , AnimalesRESUMEN
Noncoding RNAs (ncRNAs) regulation of various diseases including cancer has been extensively studied. Reactive oxidative species (ROS) elevated by oxidative stress are associated with cancer progression and drug resistance, while autophagy serves as an ROS scavenger in cancer cells. However, the regulatory effects of ncRNAs on autophagy and ROS in various cancer cells remains complex. Here, we explore how currently investigated ncRNAs, mainly miRNAs and lncRNAs, are involved in ROS production through modulating antioxidant genes. The regulatory effects of miRNAs and lncRNAs on autophagy-related (ATG) proteins to control autophagy activity in cancer cells are discussed. Moreover, differential expression of ncRNAs in tumor and normal tissues of cancer patients are further analyzed using The Cancer Genome Atlas (TCGA) database. This review hypothesizes links between ATG genes- or antioxidant genes-modulated ncRNAs and ROS production, which might result in tumorigenesis, malignancy, and cancer recurrence. A better understanding of the regulation of ROS and autophagy by ncRNAs might advance the use of ncRNAs as diagnostic and prognostic markers as well as therapeutic targets in cancer therapy.
Asunto(s)
MicroARNs , Neoplasias , Estrés Oxidativo , ARN Largo no Codificante , Antioxidantes/metabolismo , Autofagia/genética , Humanos , MicroARNs/genética , Recurrencia Local de Neoplasia , Neoplasias/genética , Neoplasias/terapia , Estrés Oxidativo/genética , ARN Largo no Codificante/genética , ARN no Traducido/genética , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Five new eudensamane-type sesquiterpene lactones, clasamanes A-E (1-5), three new dolabellane-type diterpenes, clabellanes A-C (6-8), and fifteen known compounds (9-23) were isolated from the ethanolic extract of Taiwanese soft coral Clavularia spp. The structures of all undescribed components (1-8) were determined by analysis of IR, mass, NMR, and UV spectroscopic data. The absolute configuration of new compounds was determined by using circular dichroism and DP4+ calculations. The cytotoxic activities of all isolated marine natural products were evaluated. Compound 7 showed a significant cytotoxic effect against oral cancer cell line (Ca9-22) with an IC50 value of 7.26 ± 0.17 µg/mL.
Asunto(s)
Antozoos , Antineoplásicos , Diterpenos , Neoplasias de la Boca , Animales , Antozoos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Células Tumorales Cultivadas , Espectroscopía de Resonancia Magnética , Neoplasias de la Boca/tratamiento farmacológico , Estructura Molecular , Diterpenos/farmacología , Diterpenos/químicaRESUMEN
Exosomes are cell-derived membranous structures primarily involved in the delivery of the payload to the recipient cells, and they play central roles in carcinogenesis and metastasis. Radiotherapy is a common cancer treatment that occasionally generates exosomal miRNA-associated modulation to regulate the therapeutic anticancer function and side effects. Combining radiotherapy and natural products may modulate the radioprotective and radiosensitizing responses of non-cancer and cancer cells, but there is a knowledge gap regarding the connection of this combined treatment with exosomal miRNAs and their downstream targets for radiation and exosome biogenesis. This review focuses on radioprotective natural products in terms of their impacts on exosomal miRNAs to target radiation-modulating and exosome biogenesis (secretion and assembly) genes. Several natural products have individually demonstrated radioprotective and miRNA-modulating effects. However, the impact of natural-product-modulated miRNAs on radiation response and exosome biogenesis remains unclear. In this review, by searching through PubMed/Google Scholar, available reports on potential functions that show radioprotection for non-cancer tissues and radiosensitization for cancer among these natural-product-modulated miRNAs were assessed. Next, by accessing the miRNA database (miRDB), the predicted targets of the radiation- and exosome biogenesis-modulating genes from the Gene Ontology database (MGI) were retrieved bioinformatically based on these miRNAs. Moreover, the target-centric analysis showed that several natural products share the same miRNAs and targets to regulate radiation response and exosome biogenesis. As a result, the miRNA-radiomodulation (radioprotection and radiosensitization)-exosome biogenesis axis in regard to natural-product-mediated radiotherapeutic effects is well organized. This review focuses on natural products and their regulating effects on miRNAs to assess the potential impacts of radiomodulation and exosome biogenesis for both the radiosensitization of cancer cells and the radioprotection of non-cancer cells.
Asunto(s)
Exosomas , MicroARNs , MicroARNs/genética , Exosomas/genéticaRESUMEN
Many miRNAs are known to target the AKT serine-threonine kinase (AKT) pathway, which is critical for the regulation of several cell functions in cancer cell development. Many natural products exhibiting anticancer effects have been reported, but their connections to the AKT pathway (AKT and its effectors) and miRNAs have rarely been investigated. This review aimed to demarcate the relationship between miRNAs and the AKT pathway during the regulation of cancer cell functions by natural products. Identifying the connections between miRNAs and the AKT pathway and between miRNAs and natural products made it possible to establish an miRNA/AKT/natural product axis to facilitate a better understanding of their anticancer mechanisms. Moreover, the miRNA database (miRDB) was used to retrieve more AKT pathway-related target candidates for miRNAs. By evaluating the reported facts, the cell functions of these database-generated candidates were connected to natural products. Therefore, this review provides a comprehensive overview of the natural product/miRNA/AKT pathway in the modulation of cancer cell development.
Asunto(s)
Productos Biológicos , MicroARNs , Neoplasias , Humanos , Productos Biológicos/farmacología , MicroARNs/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genéticaRESUMEN
Manoalide provides preferential antiproliferation of oral cancer but is non-cytotoxic to normal cells by modulating reactive oxygen species (ROS) and apoptosis. Although ROS interplays with endoplasmic reticulum (ER) stress and apoptosis, the influence of ER stress on manoalide-triggered apoptosis has not been reported. The role of ER stress in manoalide-induced preferential antiproliferation and apoptosis was assessed in this study. Manoalide induces a higher ER expansion and aggresome accumulation of oral cancer than normal cells. Generally, manoalide differentially influences higher mRNA and protein expressions of ER-stress-associated genes (PERK, IRE1α, ATF6, and BIP) in oral cancer cells than in normal cells. Subsequently, the contribution of ER stress on manoalide-treated oral cancer cells was further examined. ER stress inducer, thapsigargin, enhances the manoalide-induced antiproliferation, caspase 3/7 activation, and autophagy of oral cancer cells rather than normal cells. Moreover, N-acetylcysteine, an ROS inhibitor, reverses the responses of ER stress, aggresome formation, and the antiproliferation of oral cancer cells. Consequently, the preferential ER stress of manoalide-treated oral cancer cells is crucial for its antiproliferative effect.
Asunto(s)
Estrés del Retículo Endoplásmico , Neoplasias de la Boca , Estrés Oxidativo , Humanos , Apoptosis , Línea Celular Tumoral , Endorribonucleasas/metabolismo , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Ginger-derived compounds are abundant sources of anticancer natural products. However, the anticancer effects of (E)-3-hydroxy-1-(4'-hydroxy-3',5'-dimethoxyphenyl)-tetradecan-6-en-5-one (3HDT) have not been examined. This study aims to assess the antiproliferation ability of 3HDT on triple-negative breast cancer (TNBC) cells. 3HDT showed dose-responsive antiproliferation for TNBC cells (HCC1937 and Hs578T). Moreover, 3HDT exerted higher antiproliferation and apoptosis on TNBC cells than on normal cells (H184B5F5/M10). By examining reactive oxygen species, mitochondrial membrane potential, and glutathione, we found that 3HDT provided higher inductions for oxidative stress in TNBC cells compared with normal cells. Antiproliferation, oxidative stress, antioxidant signaling, and apoptosis were recovered by N-acetylcysteine, indicating that 3HDT preferentially induced oxidative-stress-mediated antiproliferation in TNBC cells but not in normal cells. Moreover, by examining γH2A histone family member X (γH2AX) and 8-hydroxy-2-deoxyguanosine, we found that 3HDT provided higher inductions for DNA damage, which was also reverted by N-acetylcysteine. In conclusion, 3HDT is an effective anticancer drug with preferential antiproliferation, oxidative stress, apoptosis, and DNA damage effects on TNBC cells.
Asunto(s)
Neoplasias de la Mama Triple Negativas , Zingiber officinale , Humanos , Acetilcisteína/farmacología , Línea Celular Tumoral , Proliferación Celular , Apoptosis , Daño del ADNRESUMEN
A series of 4-anilinoquinolinylchalcone derivatives were synthesized and evaluated for antiproliferative activities against the growth of human cancer cell lines (Huh-7 and MDA-MB-231) and normal lung cells (MRC-5). The results exhibited low cytotoxicity against human lung cells (MRC-5). Among them, (E)-3-{4-{[4-(benzyloxy)phenyl]amino}quinolin-2-yl}-1-(4-methoxyphenyl) prop-2-en-1-one (4a) was found to have the highest cytotoxicity in breast cancer cells and low cytotoxicity in normal cells. Compound 4a causes ATP depletion and apoptosis of breast cancer MDA-MB-231 cells and triggers reactive oxygen species (ROS)-dependent caspase 3/7 activation. In conclusion, it is worth studying 4-anilinoquinolinylchalcone derivatives further as new potential anticancer agents for the treatment of human cancers.
Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Especies Reactivas de Oxígeno/farmacología , Neoplasias de la Mama/metabolismo , Antineoplásicos/uso terapéutico , Apoptosis , Relación Estructura-Actividad , Estructura MolecularRESUMEN
Physalis plants are commonly used traditional medicinal herbs, and most of their extracts containing withanolides show anticancer effects. Physapruin A (PHA), a withanolide isolated from P. peruviana, shows antiproliferative effects on breast cancer cells involving oxidative stress, apoptosis, and autophagy. However, the other oxidative stress-associated response, such as endoplasmic reticulum (ER) stress, and its participation in regulating apoptosis in PHA-treated breast cancer cells remain unclear. This study aims to explore the function of oxidative stress and ER stress in modulating the proliferation and apoptosis of breast cancer cells treated with PHA. PHA induced a more significant ER expansion and aggresome formation of breast cancer cells (MCF7 and MDA-MB-231). The mRNA and protein levels of ER stress-responsive genes (IRE1α and BIP) were upregulated by PHA in breast cancer cells. The co-treatment of PHA with the ER stress-inducer (thapsigargin, TG), i.e., TG/PHA, demonstrated synergistic antiproliferation, reactive oxygen species generation, subG1 accumulation, and apoptosis (annexin V and caspases 3/8 activation) as examined by ATP assay, flow cytometry, and western blotting. These ER stress responses, their associated antiproliferation, and apoptosis changes were partly alleviated by the N-acetylcysteine, an oxidative stress inhibitor. Taken together, PHA exhibits ER stress-inducing function to promote antiproliferation and apoptosis of breast cancer cells involving oxidative stress.
Asunto(s)
Neoplasias de la Mama , Endorribonucleasas , Humanos , Femenino , Endorribonucleasas/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Apoptosis , Estrés Oxidativo , Estrés del Retículo Endoplásmico , Línea Celular TumoralRESUMEN
Triple-negative breast cancer (TNBC) is insensitive to target therapy for non-TNBC and needs novel drug discovery. Extracts of the traditional herb Boesenbergia plant in Southern Asia exhibit anticancer effects and contain novel bioactive compounds but merely show cytotoxicity. We recently isolated a new compound from B. stenophylla, stenophyllol B (StenB), but the impact and mechanism of its proliferation-modulating function on TNBC cells remain uninvestigated. This study aimed to assess the antiproliferative responses of StenB in TNBC cells and examine the drug safety in normal cells. StenB effectively suppressed the proliferation of TNBC cells rather than normal cells in terms of an ATP assay. This preferential antiproliferative function was alleviated by pretreating inhibitors for oxidative stress (N-acetylcysteine (NAC)) and apoptosis (Z-VAD-FMK). Accordingly, the oxidative-stress-related mechanisms were further assessed. StenB caused subG1 and G2/M accumulation but reduced the G1 phase in TNBC cells, while normal cells remained unchanged between the control and StenB treatments. The apoptosis behavior of TNBC cells was suppressed by StenB, whereas that of normal cells was not suppressed according to an annexin V assay. StenB-modulated apoptosis signaling, such as for caspases 3, 8, and 9, was more significantly activated in TNBC than in normal cells. StenB also caused oxidative stress in TNBC cells but not in normal cells according to a flow cytometry assay monitoring reactive oxygen species, mitochondrial superoxide, and their membrane potential. StenB induced greater DNA damage responses (γH2AX and 8-hydroxy-2-deoxyguanosine) in TNBC than in normal cells. All these StenB responses were alleviated by NAC pretreatment. Collectively, StenB modulated oxidative stress responses, leading to the antiproliferation of TNBC cells with little cytotoxicity in normal cells.
Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Daño del ADN , Proliferación Celular , Línea Celular Tumoral , Estrés Oxidativo , Apoptosis , Acetilcisteína/farmacologíaRESUMEN
BACKGROUND/PURPOSE: Upper tract urothelial carcinoma (UTUC) is a relatively rare type of urothelial carcinoma. Additionally, only few reports have examined the sex differences in patients with UTUC. Therefore, the present study aimed to identify the sex factors affecting renal function in patients with UTUC who underwent radical nephroureterectomy (RNU). METHODS: Patients who underwent RNU for non-metastatic UTUC between 2000 and 2013 were retrospectively reviewed and divided into two groups by sex. The Kaplan-Meier method was applied to evaluate the effects of sex on survival, whereas for the other clinicopathological parameters, hazard ratios were evaluated using the Cox regression model. The analyses were also performed in patients with different chronic kidney disease (CKD) stages. RESULTS: A total of 368 patients were included, 147 men and 221 women. Female patients had a higher rate of anemia, advanced CKD stage, and dialysis. Male patients predominantly had a higher rate of smoking. The Kaplan-Meier analysis revealed no differences between sexes on recurrence-free survival (RFS) and cancer-specific survival (CSS). Multivariate analysis confirmed that ureteral tumors, advanced pathological tumor stage, and adjuvant chemotherapy indicated significantly worse survival outcomes in both sexes. However, only female patients with advanced CKD showed poorer RFS. After adjusting for renal function, the analysis found men had worse RFS. CONCLUSION: The female sex is significantly associated with a higher prevalence of advanced CKD stage, and dialysis among patients with UTUC who underwent RNU in our institute. Sex differences in renal function needs to be considered when evaluating survival.
Asunto(s)
Carcinoma de Células Transicionales , Insuficiencia Renal Crónica , Neoplasias de la Vejiga Urinaria , Neoplasias Urológicas , Carcinoma de Células Transicionales/cirugía , Femenino , Humanos , Riñón/patología , Riñón/fisiología , Masculino , Nefroureterectomía/métodos , Pronóstico , Estudios Retrospectivos , Caracteres Sexuales , Neoplasias de la Vejiga Urinaria/patología , Neoplasias Urológicas/patología , Neoplasias Urológicas/cirugíaRESUMEN
The selective antiproliferation to oral cancer cells of Physalis peruviana-derived physapruin A (PHA) is rarely reported. Either drug-induced apoptosis and DNA damage or DNA repair suppression may effectively inhibit cancer cell proliferation. This study examined the selective antiproliferation ability of PHA and explored detailed mechanisms of apoptosis, DNA damage, and repair. During an ATP assay, PHA provided high cytotoxicity to two oral cancer cell lines (CAL 27 and Ca9-22) but no cytotoxicity to two non-malignant oral cells (HGF-1 and SG). This selective antiproliferation of PHA was associated with the selective generation of reactive oxygen species (ROS) in oral cancer cells rather than in non-malignant oral cells, as detected by flow cytometry. Moreover, PHA induced other oxidative stresses in oral cancer cells, such as mitochondrial superoxide generation and mitochondrial membrane potential depletion. PHA also demonstrated selective apoptosis in oral cancer cells rather than non-malignant cells in annexin V/7-aminoactinmycin D and caspase 3/7 activity assays. In flow cytometry and immunofluorescence assays, PHA induced γH2AX expressions and increased the γH2AX foci number of DNA damages in oral cancer cells. In contrast, the mRNA expressions for DNA repair signaling, including homologous recombination (HR) and non-homologous end joining (NHEJ)-associated genes, were inhibited by PHA in oral cancer cells. Moreover, the PHA-induced changes were alleviated by the oxidative stress inhibitor N-acetylcysteine. Therefore, PHA generates selective antiproliferation, oxidative stress, and apoptosis associated with DNA damage induction and DNA repair suppression in oral cancer cells.
Asunto(s)
Daño del ADN , Neoplasias de la Boca , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Reparación del ADN , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Cryptocaryone (CPC) was previously reported as preferential for killing natural products in oral cancer cells. However, its radiosensitizing potential combined with ultraviolet C (UVC) cell killing of oral cancer cells remains unclear. This study evaluates the combined anti-proliferation effect and clarifies the mechanism of combined UVC/CPC effects on oral cancer cells. UVC/CPC shows higher anti-proliferation than individual and control treatments in a low cytotoxic environment on normal oral cells. Mechanistically, combined UVC/CPC generates high levels of reactive oxygen species and induces mitochondrial dysfunction by generating mitochondrial superoxide, increasing mitochondrial mass and causing the potential destruction of the mitochondrial membrane compared to individual treatments. Moreover, combined UVC/CPC causes higher G2/M arrest and triggers apoptosis, with greater evidence of cell cycle disturbance, annexin V, pancaspase, caspases 3/7 expression or activity in oral cancer cells than individual treatments. Western blotting further indicates that UVC/CPC induces overexpression for cleaved types of poly (ADP-ribose) polymerase and caspase 3 more than individual treatments. Additionally, UVC/CPC highly induces γH2AX and 8-hydroxy-2'-deoxyguanosine adducts as DNA damage in oral cancer cells. Taken together, CPC shows a radiosensitizing anti-proliferation effect on UVC irradiated oral cancer cells with combined effects through oxidative stress, apoptosis and DNA damage.