Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 31(4): 6849-6861, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36823932

RESUMEN

We present detailed studies on exciton-photon coupling and polariton emission based on a poly(1,4-phenylenevinylene) copolymer, Super Yellow (SY), in a series of optical microcavities and optoelectronic devices, including light-emitting diode (LED) and light-emitting transistor (LET). We show that sufficiently thick SY microcavities can generate ultrastrong coupling with Rabi splitting energies exceeding 1 eV and exhibit spectrally narrow, nearly angle-independent photoluminescence following lower polariton (LP) mode dispersion. When the microcavity is designed with matched LP low-energy state and exciton emission peak for radiative pumping, the conversion efficiency from exciton to polariton emission can reach up to 80%. By introducing appropriate injection layers in a SY microcavity and optimizing the cavity design, we further demonstrate a high-performance ultrastrongly coupled SY LED with weakly dispersive electroluminescence along LP mode and a maximum external quantum efficiency (EQE) of 2.8%. Finally, we realize an ultrastrongly coupled LET based on vertical integration of a high-mobility ZnO transistor and a SY LED in a microcavity, which enables a large switching ratio, uniform emission in the ZnO pattern, and LP mode emission with a maximum EQE of 2.4%. This vertical LET addresses the difficulties of achieving high emission performance and precisely defining the emission area in typical planar LETs, and opens up the possibility of applying various strongly coupled emitters for advanced polariton devices and high-resolution applications.

2.
Opt Express ; 28(26): 39781-39789, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33379520

RESUMEN

We report a highly efficient polariton organic light-emitting diode (POLED) based on an intracavity pumping architecture, where an absorbing J-aggregate dye film is used to generate polariton modes and a red fluorescent OLED is used for radiative pumping of emission from the lower polariton (LP) branch. To realize the device with large-area uniformity and adjustable coupling strength, we develop a spin-coating method to achieve high-quality J-aggregate thin films with controlled thickness and absorption. From systematic studies of the devices with different J-aggregate film thicknesses and OLED injection layers, we show that the J-aggregate film and the pump OLED play separate roles in determining the coupling strength and electroluminescence efficiency, and can be simultaneously optimized under a cavity design with a good LP-OLED emission overlap for effective radiative pumping. By increasing the absorption with thick J-aggregate film and improving the electron injection of pump OLED with Li2CO3 interlayer, we demonstrate the POLED with a large Rabi splitting energy of 192 meV and a maximum external quantum efficiency of 1.2%, a record efficiency of POLEDs reported so far. This POLED architecture can be generally applied for exploration of various organic materials to realize novel polariton devices and electrically pumped lasers.

3.
Opt Express ; 23(11): 14695-706, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072828

RESUMEN

We present a detailed study of the optically and electrically pumped emission in the BSB-Cz/PVK bilayer waveguide devices. By optical pumping we demonstrate that PVK as a spacer between fluorescent BSB-Cz and ITO electrode allows the significant reduction of the threshold for amplified spontaneous emission (ASE) of BSB-Cz. The simulation provides a better understanding of how the PVK thickness affects the waveguide mode field distribution and hence the ASE threshold of BSB-Cz. On the other hand, the BSB-Cz/PVK bilayer OLED exhibits the external quantum efficiency of >1% and anisotropic electroluminescence with spectrally narrowed edge emission at the cutoff wavelength controlled by the BSB-Cz thickness. When tuning the cutoff wavelength to match the peak gain of BSB-Cz, we demonstrate an intense, particularly narrow edge emission (~5 nm) without obvious degradation of efficiency at a high current density of 1000 mA/cm2, suggesting a reliable device performance for high-power applications and further exploration of electrically-pumped ASE.

4.
Opt Express ; 22(24): 29388-97, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25606873

RESUMEN

Cyanine dye J-aggregate films are a class of absorbing and luminescent materials which have been extensively applied in the polariton-based research. Here we systematically study the DEDOC cyanine dyes J-aggregate films made by layer-by-layer assembly and spin-coating processes to establish a clear correlation between the film structure and the absorption and luminescence properties. From detailed analyses of morphology, optical spectra, and light-emitting diode characteristics, we demonstrate that layer-by-layer assembled film has higher degrees of homogeneity and molecular packing quality than spin-coated film, leading to a higher absorption coefficient, more uniform luminescence, and a greater electroluminescence quantum efficiency with maximized thickness.


Asunto(s)
Absorción de Radiación , Carbocianinas/química , Colorantes/química , Electricidad , Luminiscencia , Electrónica , Vidrio/química , Microscopía de Fuerza Atómica , Análisis Espectral
5.
Opt Express ; 21(18): 21365-73, 2013 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-24104011

RESUMEN

Developing of highly absorbing thin films is essential for exploration of light-matter interaction and polariton-based applications. We demonstrate here layer-by-layer assembled J-aggregate thin films of (DEDOC) cyanine dyes that have high absorption coefficient and controlled thicknesses, leading to adjustable exciton-photon coupling and Rabi splitting exceeding 400 meV at room temperature in all-metal mirror microcavities.

6.
Micromachines (Basel) ; 14(10)2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37893370

RESUMEN

Vertical light-emitting transistors (VLETs) consisting of vertically stacked unipolar transistors and organic light-emitting diodes (OLEDs) have been proposed as a prospective building block for display technologies. In addition to OLEDs, quantum-dot (QD) LEDs (QLEDs) with high brightness and high color purity have also become attractive light-emitting devices for display applications. However, few studies have attempted to integrate QLEDs into VLETs, as this not only involves technical issues such as compatible solution process of QDs and fine patterning of electrodes in multilayer stacked geometries but also requires a high driving current that is demanding on transistor design. Here we show that these integration issues of QLEDs can be addressed by using inorganic transistors with robust processability and high mobility, such as the studied ZnO transistor, which facilitates simple fabrication of QD VLETs (QVLETs) with efficient emission in the patterned channel area, suitable for high-resolution display applications. We perform a detailed optimization of QVLET by modifying ZnO:polyethylenimine nanocomposite as the electron injection layer (EIL) between the integrated ZnO transistor/QLED, and achieve the highest external quantum efficiency of ~3% and uniform emission in the patterned transistor channel. Furthermore, combined with a systematic study of corresponding QLEDs, electron-only diodes, and electroluminescence images, we provide a deeper understanding of the effect of EIL modification on current balance and distribution, and thus on QVLET performance.

7.
Phys Rev Lett ; 107(6): 066601, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21902350

RESUMEN

Intramolecular structure and intermolecular packing in crystalline molecular semiconductors should have profound effects on the charge-carrier wave function, but simple drift mobility measurements are not very sensitive to this. Here we show that differences in the Hall resistance of two soluble pentacene derivatives can be explained with different degrees of carrier delocalization being limited by thermal lattice fluctuations. A combination of Hall measurements, optical spectroscopy, and theoretical simulations provides a powerful probe of structure-property relationships at a molecular level.

8.
Nature ; 434(7030): 194-9, 2005 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-15758994

RESUMEN

Organic semiconductors have been the subject of active research for over a decade now, with applications emerging in light-emitting displays and printable electronic circuits. One characteristic feature of these materials is the strong trapping of electrons but not holes: organic field-effect transistors (FETs) typically show p-type, but not n-type, conduction even with the appropriate low-work-function electrodes, except for a few special high-electron-affinity or low-bandgap organic semiconductors. Here we demonstrate that the use of an appropriate hydroxyl-free gate dielectric--such as a divinyltetramethylsiloxane-bis(benzocyclobutene) derivative (BCB; ref. 6)--can yield n-channel FET conduction in most conjugated polymers. The FET electron mobilities thus obtained reveal that electrons are considerably more mobile in these materials than previously thought. Electron mobilities of the order of 10(-3) to 10(-2) cm(2) V(-1) s(-1) have been measured in a number of polyfluorene copolymers and in a dialkyl-substituted poly(p-phenylenevinylene), all in the unaligned state. We further show that the reason why n-type behaviour has previously been so elusive is the trapping of electrons at the semiconductor-dielectric interface by hydroxyl groups, present in the form of silanols in the case of the commonly used SiO2 dielectric. These findings should therefore open up new opportunities for organic complementary metal-oxide semiconductor (CMOS) circuits, in which both p-type and n-type behaviours are harnessed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA