Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(18): e2201646119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35507892

RESUMEN

Multiple membrane organelles require cholesterol for proper function within cells. The Niemann-Pick type C (NPC) proteins export cholesterol from endosomes to other membrane compartments, including the endoplasmic reticulum (ER), plasma membrane (PM), trans-Golgi network (TGN), and mitochondria, to meet their cholesterol requirements. Defects in NPC cause malfunctions in multiple membrane organelles and lead to an incurable neurological disorder. Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1), a resident enzyme in the ER, converts cholesterol to cholesteryl esters for storage. In mutant NPC cells, cholesterol storage still occurs in an NPC-independent manner. Here we report the interesting finding that in a mutant Npc1 mouse (Npc1nmf), Acat1 gene (Soat1) knockout delayed the onset of weight loss, motor impairment, and Purkinje neuron death. It also improved hepatosplenic pathology and prolonged lifespan by 34%. In mutant NPC1 fibroblasts, ACAT1 blockade (A1B) increased cholesterol content associated with TGN-rich membranes and mitochondria, while decreased cholesterol content associated with late endosomes. A1B also restored proper localization of syntaxin 6 and golgin 97 (key proteins in membrane trafficking at TGN) and improved the levels of cathepsin D (a key protease in lysosome and requires Golgi/endosome transport for maturation) and ABCA1 (a key protein controlling cholesterol release at PM). This work supports the hypothesis that diverting cholesterol from storage can benefit multiple diseases that involve cholesterol deficiencies in cell membranes.


Asunto(s)
Longevidad , Enfermedad de Niemann-Pick Tipo C , Acetil-CoA C-Acetiltransferasa , Enfermedad de Alzheimer , Animales , Colesterol , Ésteres del Colesterol , Modelos Animales de Enfermedad , Endosomas/genética , Ratones , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/genética , Esterol O-Aciltransferasa
2.
Environ Res ; 252(Pt 3): 118959, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663669

RESUMEN

Exposure to volatile organic compounds (VOCs) such as benzene, toluene, ethylbenzene, xylene, and formaldehyde from long-distance buses has been reported to adversely affect human health. This study investigates the concentrations of these five VOCs and evaluates their health risks to drivers and passengers on board. Ten trips from Taipei to Taichung were performed during the warm and cold seasons of 2021-2022. Two locations inside the bus were established to collect air samples by a 6-liter canister for drivers and passengers. Exposure concentrations of benzene, toluene, ethylbenzene, and xylene were analyzed via gas chromatography with a flame ionization detector and the formaldehyde concentration was monitored using a formaldehyde meter. Subsequently, a Monte Carlo simulation was conducted to evaluate the carcinogenic and non-carcinogenic risks of the five VOCs. Formaldehyde emerged as the highest detected compound (9.06 ± 3.77 µg/m3), followed by toluene (median: 6.11 µg/m3; range: 3.86-14.69 µg/m3). In particular, formaldehyde was identified to have the significantly higher concentration during non-rush hours (10.67 ± 3.21 µg/m3) than that during rush hours (7.45 ± 3.41 µg/m3) and during the warm season (10.71 ± 2.97 µg/m3) compared with that during the cold season (7.41 ± 4.26 µg/m3). Regarding non-carcinogenic risks to drivers and passengers, the chronic hazard indices for these five VOCs were under 1 to indicate an acceptable risk. In terms of carcinogenic risk, the median risks of benzene and formaldehyde for drivers were 2.88 × 10-6 (95% confidence interval [CI]: 2.11 × 10-6 - 5.13 × 10-6) and 1.91 × 10-6 (95% CI: 4.54 × 10-7 - 3.44 × 10-6), respectively. In contrast, the median carcinogenic risks of benzene and formaldehyde for passengers were less than 1 × 10-6 to present an acceptable risk. This study suggests that benzene and formaldehyde may present carcinogenic risks for drivers. Moreover, the non-carcinogenic risk for drivers and passengers is deemed acceptable. We recommended that the ventilation frequency be increased to mitigate exposure to VOCs in long-distance buses.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Humanos , Medición de Riesgo , Contaminantes Atmosféricos/análisis , Vehículos a Motor , Taiwán , Exposición a Riesgos Ambientales/análisis , Formaldehído/análisis , Emisiones de Vehículos/análisis , Exposición Profesional/análisis , Monitoreo del Ambiente
3.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982602

RESUMEN

Cholesterol is a key component of all mammalian cell membranes. Disruptions in cholesterol metabolism have been observed in the context of various diseases, including neurodegenerative disorders such as Alzheimer's disease (AD). The genetic and pharmacological blockade of acyl-CoA:cholesterol acyltransferase 1/sterol O-acyltransferase 1 (ACAT1/SOAT1), a cholesterol storage enzyme found on the endoplasmic reticulum (ER) and enriched at the mitochondria-associated ER membrane (MAM), has been shown to reduce amyloid pathology and rescue cognitive deficits in mouse models of AD. Additionally, blocking ACAT1/SOAT1 activity stimulates autophagy and lysosomal biogenesis; however, the exact molecular connection between the ACAT1/SOAT1 blockade and these observed benefits remain unknown. Here, using biochemical fractionation techniques, we observe cholesterol accumulation at the MAM which leads to ACAT1/SOAT1 enrichment in this domain. MAM proteomics data suggests that ACAT1/SOAT1 inhibition strengthens the ER-mitochondria connection. Confocal and electron microscopy confirms that ACAT1/SOAT1 inhibition increases the number of ER-mitochondria contact sites and strengthens this connection by shortening the distance between these two organelles. This work demonstrates how directly manipulating local cholesterol levels at the MAM can alter inter-organellar contact sites and suggests that cholesterol buildup at the MAM is the impetus behind the therapeutic benefits of ACAT1/SOAT1 inhibition.


Asunto(s)
Enfermedad de Alzheimer , Colesterol , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Mamíferos/metabolismo , Mitocondrias/metabolismo , Esteroles/metabolismo , Acetil-CoA C-Aciltransferasa/metabolismo , Esterol O-Aciltransferasa/metabolismo
4.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36982689

RESUMEN

Cholesterol is stored as cholesteryl esters by the enzymes acyl-CoA:cholesterol acyltransferases/sterol O:acyltransferases (ACATs/SOATs). ACAT1 blockade (A1B) ameliorates the pro-inflammatory responses of macrophages to lipopolysaccharides (LPS) and cholesterol loading. However, the mediators involved in transmitting the effects of A1B in immune cells is unknown. Microglial Acat1/Soat1 expression is elevated in many neurodegenerative diseases and in acute neuroinflammation. We evaluated LPS-induced neuroinflammation experiments in control vs. myeloid-specific Acat1/Soat1 knockout mice. We also evaluated LPS-induced neuroinflammation in microglial N9 cells with and without pre-treatment with K-604, a selective ACAT1 inhibitor. Biochemical and microscopy assays were used to monitor the fate of Toll-Like Receptor 4 (TLR4), the receptor at the plasma membrane and the endosomal membrane that mediates pro-inflammatory signaling cascades. In the hippocampus and cortex, results revealed that Acat1/Soat1 inactivation in myeloid cell lineage markedly attenuated LPS-induced activation of pro-inflammatory response genes. Studies in microglial N9 cells showed that pre-incubation with K-604 significantly reduced the LPS-induced pro-inflammatory responses. Further studies showed that K-604 decreased the total TLR4 protein content by increasing TLR4 endocytosis, thus enhancing the trafficking of TLR4 to the lysosomes for degradation. We concluded that A1B alters the intracellular fate of TLR4 and suppresses its pro-inflammatory signaling cascade in response to LPS.


Asunto(s)
Lipopolisacáridos , Microglía , Animales , Ratones , Aciltransferasas/metabolismo , Colesterol/metabolismo , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Ratones Noqueados , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Receptor Toll-Like 4/metabolismo
5.
Int J Mol Sci ; 24(13)2023 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-37446191

RESUMEN

Cholesterol is essential for cellular function and is stored as cholesteryl esters (CEs). CEs biosynthesis is catalyzed by the enzymes acyl-CoA:cholesterol acyltransferase 1 and 2 (ACAT1 and ACAT2), with ACAT1 being the primary isoenzyme in most cells in humans. In Alzheimer's Disease, CEs accumulate in vulnerable brain regions. Therefore, ACATs may be promising targets for treating AD. F12511 is a high-affinity ACAT1 inhibitor that has passed phase 1 safety tests for antiatherosclerosis. Previously, we developed a nanoparticle system to encapsulate a large concentration of F12511 into a stealth liposome (DSPE-PEG2000 with phosphatidylcholine). Here, we injected the nanoparticle encapsulated F12511 (nanoparticle F) intravenously (IV) in wild-type mice and performed an HPLC/MS/MS analysis and ACAT enzyme activity measurement. The results demonstrated that F12511 was present within the mouse brain after a single IV but did not overaccumulate in the brain or other tissues after repeated IVs. A histological examination showed that F12511 did not cause overt neurological or systemic toxicity. We then showed that a 2-week IV delivery of nanoparticle F to aging 3xTg AD mice ameliorated amyloidopathy, reduced hyperphosphorylated tau and nonphosphorylated tau, and reduced neuroinflammation. This work lays the foundation for nanoparticle F to be used as a possible therapy for AD and other neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Ratones Transgénicos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Liposomas , Distribución Tisular , Espectrometría de Masas en Tándem , Acetil-CoA C-Acetiltransferasa/metabolismo
6.
Nature ; 531(7596): 651-5, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-26982734

RESUMEN

CD8(+) T cells have a central role in antitumour immunity, but their activity is suppressed in the tumour microenvironment. Reactivating the cytotoxicity of CD8(+) T cells is of great clinical interest in cancer immunotherapy. Here we report a new mechanism by which the antitumour response of mouse CD8(+) T cells can be potentiated by modulating cholesterol metabolism. Inhibiting cholesterol esterification in T cells by genetic ablation or pharmacological inhibition of ACAT1, a key cholesterol esterification enzyme, led to potentiated effector function and enhanced proliferation of CD8(+) but not CD4(+) T cells. This is due to the increase in the plasma membrane cholesterol level of CD8(+) T cells, which causes enhanced T-cell receptor clustering and signalling as well as more efficient formation of the immunological synapse. ACAT1-deficient CD8(+) T cells were better than wild-type CD8(+) T cells at controlling melanoma growth and metastasis in mice. We used the ACAT inhibitor avasimibe, which was previously tested in clinical trials for treating atherosclerosis and showed a good human safety profile, to treat melanoma in mice and observed a good antitumour effect. A combined therapy of avasimibe plus an anti-PD-1 antibody showed better efficacy than monotherapies in controlling tumour progression. ACAT1, an established target for atherosclerosis, is therefore also a potential target for cancer immunotherapy.


Asunto(s)
Acetatos/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Colesterol/metabolismo , Inmunoterapia/métodos , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Ácidos Sulfónicos/farmacología , Acetamidas , Acetatos/uso terapéutico , Acetil-CoA C-Acetiltransferasa/antagonistas & inhibidores , Acetil-CoA C-Acetiltransferasa/deficiencia , Acetil-CoA C-Acetiltransferasa/genética , Acetil-CoA C-Acetiltransferasa/metabolismo , Animales , Aterosclerosis/tratamiento farmacológico , Linfocitos T CD8-positivos/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Esterificación/efectos de los fármacos , Femenino , Sinapsis Inmunológicas/efectos de los fármacos , Sinapsis Inmunológicas/inmunología , Sinapsis Inmunológicas/metabolismo , Masculino , Melanoma/metabolismo , Melanoma/patología , Ratones , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfonamidas , Ácidos Sulfónicos/uso terapéutico
7.
Environ Res ; 213: 113644, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35697085

RESUMEN

Many volatile organic compounds (VOCs) are used for experiments at universities, and most of them contain benzene, toluene, ethylbenzene, xylene, and an extraction solvent of dichloromethane. This study aimed to investigate the indoor concentrations of these five compounds in different locations on campus and to evaluate possible health risks for faculty members and students in a medical university. We selected 10 locations as sampling sites to conduct 4-h monitoring sessions on weekdays each season during 2019-2020. We used a 6-liter canister to collect air samples and analyzed these five VOCs via gas chromatography with a flame ionization detector. Monte Carlo simulation was performed to evaluate the carcinogenic and noncarcinogenic risks of these five VOCs. We found that dichloromethane was the most highly detected compound (median: 621.07 µg/m3; range: 44.01-8523.91 µg/m3), and the Department of Medicine had the highest concentration of the total of these VOCs among all of the locations (median: 5595.29 µg/m3; range: 1565.67-7398.66 µg/m3). The median carcinogenic risks of dichloromethane and benzene were 6.36 × 10-5 (95% confidence interval [CI]: 6.83 × 10-6-7.37 × 10-4) and 5.47 × 10-6 (95% CI: 4.03 × 10-7-2.42 × 10-5), respectively, for faculty members, and the lower risks of 3.14 × 10-5 (95% CI: 3.39 × 10-6-3.64 × 10-4) and 2.69 × 10-6 (95% CI: 1.97 × 10-7-1.19 × 10-5) were estimated for the students. The chronic noncarcinogenic risks of four VOCs were less than one, except for dichloromethane with a median hazard index of 1.92 (95% CI: 2.11 × 10-1-2.22 × 101). This study observed the spatial variation in the concentrations of the total of five VOCs and dichloromethane. The carcinogenic risks were classified as being at the possible level, and the noncarcinogenic risk of dichloromethane was greater than the acceptable level. Increasing local exhaust ventilation during the experiment and reducing the using amount of dichloromethane are recommended actions to reduce VOCs exposures in the medical university.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Benceno/análisis , Benceno/toxicidad , Monitoreo del Ambiente/métodos , Humanos , Cloruro de Metileno/análisis , Medición de Riesgo , Universidades , Compuestos Orgánicos Volátiles/análisis
8.
J Biol Chem ; 294(43): 15836-15849, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31495784

RESUMEN

Cholesterol esters are a key ingredient of foamy cells in atherosclerotic lesions; their formation is catalyzed by two enzymes: acyl-CoA:cholesterol acyltransferases (ACATs; also called sterol O-acyltransferases, or SOATs) ACAT1 and ACAT2. ACAT1 is present in all body cells and is the major isoenzyme in macrophages. Whether blocking ACAT1 benefits atherosclerosis has been under debate for more than a decade. Previously, our laboratory developed a myeloid-specific Acat1 knockout (KO) mouse (Acat1-M/-M), devoid of ACAT1 only in macrophages, microglia, and neutrophils. In previous work using the ApoE KO (ApoE-/-) mouse model for early lesions, Acat1-M/-M significantly reduced lesion macrophage content and suppressed atherosclerosis progression. In advanced lesions, cholesterol crystals become a prominent feature. Here we evaluated the effects of Acat1-M/-M in the ApoE KO mouse model for more advanced lesions and found that mice lacking myeloid Acat1 had significantly reduced lesion cholesterol crystal contents. Acat1-M/-M also significantly reduced lesion size and macrophage content without increasing apoptotic cell death. Cell culture studies showed that inhibiting ACAT1 in macrophages caused cells to produce less proinflammatory responses upon cholesterol loading by acetyl low-density lipoprotein. In advanced lesions, Acat1-M/-M reduced but did not eliminate foamy cells. In advanced plaques isolated from ApoE-/- mice, immunostainings showed that both ACAT1 and ACAT2 are present. In cell culture, both enzymes are present in macrophages and smooth muscle cells and contribute to cholesterol ester biosynthesis. Overall, our results support the notion that targeting ACAT1 or targeting both ACAT1 and ACAT2 in macrophages is a novel strategy to treat advanced lesions.


Asunto(s)
Aterosclerosis/enzimología , Aterosclerosis/prevención & control , Inflamación/patología , Macrófagos Peritoneales/enzimología , Células Mieloides/enzimología , Esterol O-Aciltransferasa/metabolismo , Animales , Apolipoproteínas E , Apoptosis , Aterosclerosis/patología , Colesterol/metabolismo , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Eliminación de Gen , Silenciador del Gen , Hidroxicolesteroles/metabolismo , Lipoproteínas LDL/metabolismo , Ratones , Ratones Noqueados , Músculo Liso Vascular/patología , Células Mieloides/patología , Miocitos del Músculo Liso/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Células RAW 264.7
9.
Arch Biochem Biophys ; 691: 108518, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32735863

RESUMEN

To conduct biochemical studies in vitro, membrane proteins (MPs) must be solubilized with detergents. While detergents are great tools, they can also inhibit the biological activity and/or perturb oligomerization of individual MPs. Nanodisc scaffold peptide (NSPr), an amphipathic peptide analog of ApoA1, was recently shown to reconstitute detergent solubilized MPs into peptidiscs in vitro. Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1), also known as sterol O-acyltransferase 1 (SOAT1), plays a key role in cellular cholesterol storage in various cell types and is a drug target to treat multiple human diseases. ACAT1 contains nine transmembrane domains (TMDs) and primarily forms a homotetramer in vitro and in intact cells; deletion of the N-terminal dimerization domain produces a homodimer with full retention in catalytic activity. ACAT1 is prone to inactivation by numerous detergents. Here we pursued the use of NSPr to overcome the detergent-induced inactivation of ACAT1 by generating near detergent-free ACAT1 peptidiscs. Based on native-PAGE analysis, we showed that NSPr reconstitutes ACAT1 into soluble peptidiscs, in which ACAT1 exists predominantly in oligomeric states greater than a homotetramer. The formation of these higher-order oligomeric states was independent of the N-terminal dimerization domain, suggesting that the oligomerization is mediated through hydrophobic interactions of multiple ACAT1 subunits. ACAT1 peptidiscs were still susceptible to heat-mediated inactivation, presumably due to the residual detergent (CHAPS) bound to ACAT1. We then conditioned ACAT1 with phosphatidylcholine (PC) to replace CHAPS prior to the formation of ACAT1 peptidiscs. The results showed, when PC was included, ACAT1 was present mainly in higher-order oligomeric states with greater enzymatic activity. With PC present, the enzymatic activity of ACAT1 peptidiscs was protected from heat-mediated inactivation. These results support the use of NSPr to create a near detergent-free solution of ACAT1 in peptidiscs for various in vitro studies. Our current results also raise the possibility that, under certain conditions, ACAT1 may form higher-order oligomeric states in vivo.


Asunto(s)
Péptidos/química , Esterol O-Aciltransferasa/química , Tensoactivos/química , Secuencia de Aminoácidos , Animales , Células CHO , Ácidos Cólicos/química , Cricetulus , Detergentes/química , Digitonina/química , Humanos , Dominios Proteicos , Multimerización de Proteína , Esterol O-Aciltransferasa/metabolismo
10.
Cancer Cell Int ; 19: 87, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30996687

RESUMEN

BACKGROUND: To determine the association between circadian pathway genetic variants and the risk of prostate cancer progression. METHODS: We systematically evaluated 79 germline variants in nine circadian pathway genes in a cohort of 458 patients with localized prostate cancer as the discovery phase. We then replicated the significant findings in another cohort of 324 men with more advanced disease. The association of each variant with prostate cancer progression was evaluated by a log-rank test and Cox regression. RESULTS: A single nucleotide polymorphism of the neuronal PAS domain protein 2 (NPAS2) gene (rs6542993 A>T) was found to be associated with a significantly higher risk of disease progression in both localized (P = 0.001) and advanced (P = 0.039) prostate cancer cases. In silico analysis revealed decreased expression levels of NPAS2 in carriers of the T allele of rs6542993 compared with those carrying the A allele. Consistently, downregulation of NPAS2 expression was associated with more aggressive prostate cancer and poor progression-free survival (log-rank P = 0.002). CONCLUSIONS: The NPAS2 rs6542993 polymorphism may be a promising biomarker, and may shed light on the pathways that govern prostate cancer progression.

11.
Arch Biochem Biophys ; 671: 103-110, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31251920

RESUMEN

Cholesterol is an important lipid molecule and is needed for all mammalian cells. In various cell types, excess cholesterol is stored as cholesteryl esters; acyl-CoA:cholesterol acyltransferase 1 (ACAT1) plays an essential role in this storage process. ACAT1 is located at the endoplasmic reticulum and has nine transmembrane domains (TMDs). It is a member of the membrane-bound O-acyltransferase (MBOAT) family, in which members contain multiple TMDs and participate in a variety of biological functions. When solubilized in the zwitterionic detergent CHAPS, ACAT1 can be purified to homogeneity with full enzyme activity and behaves as a homotetrameric protein. ACAT1 contains two dimerization motifs. The first motif is located near the N-terminus and is not conserved in MBOATs. Deletion of the N-terminal dimerization domain converts ACAT1 to a dimer with full catalytic activity; therefore, ACAT1 is a two-fold dimer. The second dimerization domain, located near the C-terminus, is conserved in MBOATs; however, it was not known whether the C-terminal dimerization domain is required for enzyme activity. Here we show that treating ACAT1 with non-ionic detergent, Triton X-100 or octyl glucoside, causes the enzyme to become a two-fold monomer without any enzymatic activity. Detergent exchange of Triton X-100 with CHAPS restores ACAT1 to a two-fold dimer but fails to restore its enzymatic activity. These results implicate that ACAT1 requires hydrophobic subunit interactions near the C-terminus in order to remain active as a two-fold dimer. Our results also caution the use of Triton X-100 or octyl glucoside to purify other MBOATs.


Asunto(s)
Acetil-CoA C-Acetiltransferasa/antagonistas & inhibidores , Detergentes/química , Inhibidores Enzimáticos/química , Glucósidos/química , Octoxinol/química , Multimerización de Proteína/efectos de los fármacos , Acetil-CoA C-Acetiltransferasa/metabolismo , Animales , Células CHO , Ácidos Cólicos/química , Cricetulus , Cabras , Células HEK293 , Humanos , Ratones , Conejos
12.
J Cell Mol Med ; 22(7): 3661-3670, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29682886

RESUMEN

Single nucleotide polymorphisms (SNPs) within the regulatory elements of a gene can alter gene expression, making these SNPs of prime importance for candidate gene association studies. We aimed to determine whether such regulatory variants are associated with clinical outcomes in three cohorts of patients with prostate cancer. We used RegulomeDB to identify potential regulatory variants based on in silico predictions and reviewed genome-wide experimental findings. Overall, 131 putative regulatory SNPs with the highest confidence score on predicted functionality were investigated in two independent localized prostate cancer cohorts totalling 458 patients who underwent radical prostatectomy. The statistically significant SNPs identified in these two cohorts were then tested in an additional cohort of 504 patients with advanced prostate cancer. We identified one regulatory SNPs, rs1646724, that are consistently associated with increased risk of recurrence in localized disease (P = .003) and mortality in patients with advanced prostate cancer (P = .032) after adjusting for known clinicopathological factors. Further investigation revealed that rs1646724 may affect expression of SLC35B4, which encodes a glycosyltransferase, and that down-regulation of SLC35B4 by transfecting short hairpin RNA in DU145 human prostate cancer cell suppressed proliferation, migration and invasion. Furthermore, we found increased SLC35B4 expression correlated with more aggressive forms of prostate cancer and poor patient prognosis. Our study provides robust evidence that regulatory genetic variants can affect clinical outcomes.


Asunto(s)
Proteínas de Transporte de Nucleótidos/genética , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/patología , Anciano , Estudios de Cohortes , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/genética , Prostatectomía , Neoplasias de la Próstata/cirugía , Taiwán/epidemiología , Análisis de Matrices Tisulares
13.
Am J Physiol Endocrinol Metab ; 315(3): E340-E356, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29533741

RESUMEN

Macrophages are phagocytes that play important roles in health and diseases. Acyl-CoA:cholesterol acyltransferase 1 (ACAT1) converts cellular cholesterol to cholesteryl esters and is expressed in many cell types. Unlike global Acat1 knockout (KO), myeloid-specific Acat1 KO ( Acat1-) does not cause overt abnormalities in mice. Here, we performed analyses in age- and sex-matched Acat1-M/-M and wild-type mice on chow or Western diet and discovered that Acat1-M/-M mice exhibit resistance to Western diet-induced obesity. On both chow and Western diets, Acat1-M/-M mice display decreased adipocyte size and increased insulin sensitivity. When fed with Western diet, Acat1-M/-M mice contain fewer infiltrating macrophages in white adipose tissue (WAT), with significantly diminished inflammatory phenotype. Without Acat1, the Ly6Chi monocytes express reduced levels of integrin-ß1, which plays a key role in the interaction between monocytes and the inflamed endothelium. Adoptive transfer experiment showed that the appearance of leukocytes from Acat1-M/-M mice to the inflamed WAT of wild-type mice is significantly diminished. Under Western diet, Acat1-M/-M causes suppression of multiple proinflammatory genes in WAT. Cell culture experiments show that in RAW 264.7 macrophages, inhibiting ACAT1 with a small-molecule ACAT1-specific inhibitor reduces inflammatory responses to lipopolysaccharide. We conclude that under Western diet, blocking ACAT1 in macrophages attenuates inflammation in WAT. Other results show that Acat1-M/-M does not compromise antiviral immune response. Our work reveals that blocking ACAT1 suppresses diet-induced obesity in part by slowing down monocyte infiltration to WAT as well as by reducing the inflammatory responses of adipose tissue macrophages.


Asunto(s)
Acetil-CoA C-Acetiltransferasa/genética , Acetil-CoA C-Acetiltransferasa/fisiología , Dieta , Inflamación/genética , Inflamación/patología , Resistencia a la Insulina/genética , Macrófagos/patología , Obesidad/genética , Esterol O-Aciltransferasa/genética , Esterol O-Aciltransferasa/fisiología , Adipocitos/patología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Tamaño de la Célula , Femenino , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Inflamación/inmunología , Integrina beta1/metabolismo , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/fisiopatología , Células RAW 264.7
14.
J Lipid Res ; 58(12): 2239-2254, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28298292

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia in older adults. Currently, there is no cure for AD. The hallmark of AD is the accumulation of extracellular amyloid plaques composed of amyloid-ß (Aß) peptides (especially Aß1-42) and neurofibrillary tangles, composed of hyperphosphorylated tau and accompanied by chronic neuroinflammation. Aß peptides are derived from the amyloid precursor protein (APP). The oligomeric form of Aß peptides is probably the most neurotoxic species; its accumulation eventually forms the insoluble and aggregated amyloid plaques. ApoE is the major apolipoprotein of the lipoprotein(s) present in the CNS. ApoE has three alleles, of which the Apoe4 allele constitutes the major risk factor for late-onset AD. Here we describe the complex relationship between ApoE4, oligomeric Aß peptides, and cholesterol homeostasis. The review consists of four parts: 1) key elements involved in cellular cholesterol metabolism and regulation; 2) key elements involved in intracellular cholesterol trafficking; 3) links between ApoE4, Aß peptides, and disturbance of cholesterol homeostasis in the CNS; 4) potential lipid-based therapeutic targets to treat AD. At the end, we recommend several research topics that we believe would help in better understanding the connection between cholesterol and AD for further investigations.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Apolipoproteína E4/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Ovillos Neurofibrilares/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Apolipoproteína E4/genética , Transporte Biológico , Encéfalo/patología , Regulación de la Expresión Génica , Homeostasis/genética , Humanos , Metabolismo de los Lípidos , Ovillos Neurofibrilares/genética , Ovillos Neurofibrilares/patología , Transducción de Señal , Proteínas tau/genética , Proteínas tau/metabolismo
15.
J Biol Chem ; 291(12): 6232-44, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26801614

RESUMEN

Acyl-CoA:cholesterol acyltransferase 1 (Acat1) converts cellular cholesterol to cholesteryl esters and is considered a drug target for treating atherosclerosis. However, in mouse models for atherosclerosis, global Acat1 knockout (Acat1(-/-)) did not prevent lesion development. Acat1(-/-) increased apoptosis within lesions and led to several additional undesirable phenotypes, including hair loss, dry eye, leukocytosis, xanthomatosis, and a reduced life span. To determine the roles of Acat1 in monocytes/macrophages in atherosclerosis, we produced a myeloid-specific Acat1 knockout (Acat1(-M/-M)) mouse and showed that, in the Apoe knockout (Apoe(-/-)) mouse model for atherosclerosis, Acat1(-M/-M) decreased the plaque area and reduced lesion size without causing leukocytosis, dry eye, hair loss, or a reduced life span. Acat1(-M/-M) enhanced xanthomatosis in apoe(-/-) mice, a skin disease that is not associated with diet-induced atherosclerosis in humans. Analyses of atherosclerotic lesions showed that Acat1(-M/-M) reduced macrophage numbers and diminished the cholesterol and cholesteryl ester load without causing detectable apoptotic cell death. Leukocyte migration analysis in vivo showed that Acat1(-M/-M) caused much fewer leukocytes to appear at the activated endothelium. Studies in inflammatory (Ly6C(hi)-positive) monocytes and in cultured macrophages showed that inhibiting ACAT1 by gene knockout or by pharmacological inhibition caused a significant decrease in integrin ß 1 (CD29) expression in activated monocytes/macrophages. The sparse presence of lesion macrophages without Acat1 can therefore, in part, be attributed to decreased interaction between inflammatory monocytes/macrophages lacking Acat1 and the activated endothelium. We conclude that targeting ACAT1 in a myeloid cell lineage suppresses atherosclerosis progression while avoiding many of the undesirable side effects caused by global Acat1 inhibition.


Asunto(s)
Acetil-CoA C-Acetiltransferasa/genética , Aterosclerosis/inmunología , Macrófagos/inmunología , Acetil-CoA C-Acetiltransferasa/metabolismo , Animales , Apoptosis , Aterosclerosis/genética , Aterosclerosis/patología , Linfocitos B/metabolismo , Médula Ósea/patología , Movimiento Celular , Proliferación Celular , Dieta Alta en Grasa/efectos adversos , Progresión de la Enfermedad , Endotelio Vascular/inmunología , Endotelio Vascular/patología , Femenino , Células Madre Hematopoyéticas/fisiología , Leucocitosis/genética , Leucocitosis/inmunología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/enzimología
16.
J Lipid Res ; 57(1): 77-88, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26497474

RESUMEN

Mammalian cells synthesize various sterol molecules, including the C30 sterol, lanosterol, as cholesterol precursors in the endoplasmic reticulum. The build-up of precursor sterols, including lanosterol, displays cellular toxicity. Precursor sterols are found in plasma HDL. How these structurally different sterols are released from cells is poorly understood. Here, we show that newly synthesized precursor sterols arriving at the plasma membrane (PM) are removed by extracellular apoA-I in a manner dependent on ABCA1, a key macromolecule for HDL biogenesis. Analysis of sterol molecules by GC-MS and tracing the fate of radiolabeled acetate-derived sterols in normal and mutant Niemann-Pick type C cells reveal that ABCA1 prefers newly synthesized sterols, especially lanosterol, as the substrates before they are internalized from the PM. We also show that ABCA1 resides in a cholesterol-rich membrane domain resistant to the mild detergent, Brij 98. Blocking ACAT activity increases the cholesterol contents of this domain. Newly synthesized C29/C30 sterols are transiently enriched within this domain, but rapidly disappear from this domain with a half-life of less than 1 h. Our work shows that substantial amounts of precursor sterols are transported to a certain PM domain and are removed by the ABCA1-dependent pathway.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , HDL-Colesterol/biosíntesis , Esteroles/metabolismo , Animales , Apolipoproteína A-I/metabolismo , Transporte Biológico , Células CHO , Membrana Celular/metabolismo , Células Cultivadas , Colesterol/metabolismo , HDL-Colesterol/metabolismo , Cricetulus , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Lipoproteínas HDL/metabolismo , Microdominios de Membrana/metabolismo , Ratones , Esterol O-Aciltransferasa/metabolismo
17.
J Biol Chem ; 290(39): 23464-77, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26198636

RESUMEN

Cellular cholesterol homeostasis involves sterol sensing at the endoplasmic reticulum (ER) and sterol export from the plasma membrane (PM). Sterol sensing at the ER requires efficient sterol delivery from the PM; however, the macromolecules that facilitate retrograde sterol transport at the PM have not been identified. ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol and phospholipid export to apolipoprotein A-I for the assembly of high density lipoprotein (HDL). Mutations in ABCA1 cause Tangier disease, a familial HDL deficiency. Several lines of clinical and experimental evidence suggest a second function of ABCA1 in cellular cholesterol homeostasis in addition to mediating cholesterol efflux. Here, we report the unexpected finding that ABCA1 also plays a key role in facilitating retrograde sterol transport from the PM to the ER for sterol sensing. Deficiency in ABCA1 delays sterol esterification at the ER and activates the SREBP-2 cleavage pathway. The intrinsic ATPase activity in ABCA1 is required to facilitate retrograde sterol transport. ABCA1 deficiency causes alternation of PM composition and hampers a clathrin-independent endocytic activity that is required for ER sterol sensing. Our finding identifies ABCA1 as a key macromolecule facilitating bidirectional sterol movement at the PM and shows that ABCA1 controls retrograde sterol transport by modulating a certain clathrin-independent endocytic process.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Retículo Endoplásmico/metabolismo , Esteroles/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Metabolismo de los Lípidos , Ratones , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
18.
Am J Epidemiol ; 184(2): 120-8, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27370792

RESUMEN

Occupational noise exposure is associated with cardiovascular disease, but little is known about the contributions of noise frequency components. This retrospective study investigated the relationship between exposure to different noise frequencies and the incidence of hypertension. A cohort of 1,002 volunteers from 4 machinery and equipment manufacturing companies in Taichung, Taiwan, was followed from 1973 to 2012. Personal noise measurements and environmental octave-band analyses were performed to divide subjects into different exposure groups. Cox regression models were used to estimate the relative risk of hypertension. Participants exposed to ≥80 A-weighted decibels (dBA) over 8 years had a higher relative risk of hypertension (relative risk = 1.38, 95% confidence interval: 1.02, 1.85) compared with those exposed to <75 dBA. Significant exposure-response patterns were observed between incident hypertension and stratum of noise exposure at frequencies of 250 Hz, 1 kHz, 2 kHz, 4 kHz, and 8 kHz. The strongest effect was found at 4 kHz; a 20-dBA increase in noise exposure at 4 kHz was associated with a 34% higher risk of hypertension (relative risk = 1.34, 95% confidence interval: 1.01, 1.77). Occupational noise exposure may be associated with an increased risk of hypertension, and the 4 kHz component of occupational noise exposure may have the strongest relationship with hypertension.


Asunto(s)
Hipertensión/epidemiología , Ruido en el Ambiente de Trabajo/efectos adversos , Estudios de Casos y Controles , Femenino , Humanos , Hipertensión/etnología , Incidencia , Masculino , Exposición Profesional/efectos adversos , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Riesgo , Taiwán/epidemiología
20.
Int J Mol Sci ; 17(12)2016 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-27898031

RESUMEN

Aberrant Wnt signaling has been associated with many types of cancer. However, the association of inherited Wnt pathway variants with clinical outcomes in prostate cancer patients receiving androgen deprivation therapy (ADT) has not been determined. Here, we comprehensively studied the contribution of common single nucleotide polymorphisms (SNPs) in Wnt pathway genes to the clinical outcomes of 465 advanced prostate cancer patients treated with ADT. Two SNPs, adenomatous polyposis coli (APC) rs2707765 and rs497844, were significantly (p ≤ 0.009 and q ≤ 0.043) associated with both prostate cancer progression and all-cause mortality, even after multivariate analyses and multiple testing correction. Patients with a greater number of favorable alleles had a longer time to disease progression and better overall survival during ADT (p for trend ≤ 0.003). Additional, cDNA array and in silico analyses of prostate cancer tissue suggested that rs2707765 affects APC expression, which in turn is correlated with tumor aggressiveness and patient prognosis. This study identifies the influence of inherited variants in the Wnt pathway on the efficacy of ADT and highlights a preclinical rationale for using APC as a prognostic marker in advanced prostate cancer.


Asunto(s)
Polimorfismo de Nucleótido Simple/genética , Neoplasias de la Próstata/metabolismo , Poliposis Adenomatosa del Colon/genética , Antagonistas de Andrógenos/uso terapéutico , Antineoplásicos Hormonales/uso terapéutico , Progresión de la Enfermedad , Genotipo , Humanos , Masculino , Pronóstico , Próstata/efectos de los fármacos , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/genética , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA