Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38893190

RESUMEN

PURPOSE: To assess the association of a polygenic risk score (PRS) for functional genetic variants with the risk of developing breast cancer. METHODS: Summary data-based Mendelian randomization (SMR) and heterogeneity in dependent instruments (HEIDI) were used to identify breast cancer risk variants associated with gene expression and DNA methylation levels. A new SMR-based PRS was computed from the identified variants (functional PRS) and compared to an established 313-variant breast cancer PRS (GWAS PRS). The two scores were evaluated in 3560 breast cancer cases and 3383 non-cancer controls and also in a prospective study (n = 10,213) comprising 418 cases. RESULTS: We identified 149 variants showing pleiotropic association with breast cancer risk (eQTLHEIDI > 0.05 = 9, mQTLHEIDI > 0.05 = 165). The discriminatory ability of the functional PRS (AUCcontinuous [95% CI]: 0.540 [0.526 to 0.553]) was found to be lower than that of the GWAS PRS (AUCcontinuous [95% CI]: 0.609 [0.596 to 0.622]). Even when utilizing 457 distinct variants from both the functional and GWAS PRS, the combined discriminatory performance remained below that of the GWAS PRS (AUCcontinuous, combined [95% CI]: 0.561 [0.548 to 0.575]). A binary high/low-risk classification based on the 80th centile PRS in controls revealed a 6% increase in cases using the GWAS PRS compared to the functional PRS. The functional PRS identified an additional 12% of high-risk cases but also led to a 13% increase in high-risk classification among controls. Similar findings were observed in the SCHS prospective cohort, where the GWAS PRS outperformed the functional PRS, and the highest-performing PRS, a combined model, did not significantly improve over the GWAS PRS. CONCLUSIONS: While this study identified potentially functional variants associated with breast cancer risk, their inclusion did not substantially enhance the predictive accuracy of the GWAS PRS.

2.
Int J Epidemiol ; 52(5): 1498-1521, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38587501

RESUMEN

Background: Mendelian randomization (MR) studies are susceptible to metadata errors (e.g. incorrect specification of the effect allele column) and other analytical issues that can introduce substantial bias into analyses. We developed a quality control (QC) pipeline for the Fatty Acids in Cancer Mendelian Randomization Collaboration (FAMRC) that can be used to identify and correct for such errors. Methods: We collated summary association statistics from fatty acid and cancer genome-wide association studies (GWAS) and subjected the collated data to a comprehensive QC pipeline. We identified metadata errors through comparison of study-specific statistics to external reference data sets (the National Human Genome Research Institute-European Bioinformatics Institute GWAS catalogue and 1000 genome super populations) and other analytical issues through comparison of reported to expected genetic effect sizes. Comparisons were based on three sets of genetic variants: (i) GWAS hits for fatty acids, (ii) GWAS hits for cancer and (iii) a 1000 genomes reference set. Results: We collated summary data from 6 fatty acid and 54 cancer GWAS. Metadata errors and analytical issues with the potential to introduce substantial bias were identified in seven studies (11.6%). After resolving metadata errors and analytical issues, we created a data set of 219 842 genetic associations with 90 cancer types, generated in analyses of 566 665 cancer cases and 1 622 374 controls. Conclusions: In this large MR collaboration, 11.6% of included studies were affected by a substantial metadata error or analytical issue. By increasing the integrity of collated summary data prior to their analysis, our protocol can be used to increase the reliability of downstream MR analyses. Our pipeline is available to other researchers via the CheckSumStats package (https://github.com/MRCIEU/CheckSumStats).


Asunto(s)
Estudio de Asociación del Genoma Completo , Neoplasias , Humanos , Análisis de la Aleatorización Mendeliana , Reproducibilidad de los Resultados , Ácidos Grasos , Control de Calidad , Neoplasias/epidemiología , Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA