Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nature ; 605(7909): 285-290, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35477765

RESUMEN

Comprehensive assessments of species' extinction risks have documented the extinction crisis1 and underpinned strategies for reducing those risks2. Global assessments reveal that, among tetrapods, 40.7% of amphibians, 25.4% of mammals and 13.6% of birds are threatened with extinction3. Because global assessments have been lacking, reptiles have been omitted from conservation-prioritization analyses that encompass other tetrapods4-7. Reptiles are unusually diverse in arid regions, suggesting that they may have different conservation needs6. Here we provide a comprehensive extinction-risk assessment of reptiles and show that at least 1,829 out of 10,196 species (21.1%) are threatened-confirming a previous extrapolation8 and representing 15.6 billion years of phylogenetic diversity. Reptiles are threatened by the same major factors that threaten other tetrapods-agriculture, logging, urban development and invasive species-although the threat posed by climate change remains uncertain. Reptiles inhabiting forests, where these threats are strongest, are more threatened than those in arid habitats, contrary to our prediction. Birds, mammals and amphibians are unexpectedly good surrogates for the conservation of reptiles, although threatened reptiles with the smallest ranges tend to be isolated from other threatened tetrapods. Although some reptiles-including most species of crocodiles and turtles-require urgent, targeted action to prevent extinctions, efforts to protect other tetrapods, such as habitat preservation and control of trade and invasive species, will probably also benefit many reptiles.


Asunto(s)
Conservación de los Recursos Naturales , Extinción Biológica , Reptiles , Caimanes y Cocodrilos , Anfibios , Animales , Biodiversidad , Aves , Mamíferos , Filogenia , Reptiles/clasificación , Medición de Riesgo , Tortugas
2.
PLoS Biol ; 20(5): e3001544, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35617356

RESUMEN

The Red List of Threatened Species, published by the International Union for Conservation of Nature (IUCN), is a crucial tool for conservation decision-making. However, despite substantial effort, numerous species remain unassessed or have insufficient data available to be assigned a Red List extinction risk category. Moreover, the Red Listing process is subject to various sources of uncertainty and bias. The development of robust automated assessment methods could serve as an efficient and highly useful tool to accelerate the assessment process and offer provisional assessments. Here, we aimed to (1) present a machine learning-based automated extinction risk assessment method that can be used on less known species; (2) offer provisional assessments for all reptiles-the only major tetrapod group without a comprehensive Red List assessment; and (3) evaluate potential effects of human decision biases on the outcome of assessments. We use the method presented here to assess 4,369 reptile species that are currently unassessed or classified as Data Deficient by the IUCN. The models used in our predictions were 90% accurate in classifying species as threatened/nonthreatened, and 84% accurate in predicting specific extinction risk categories. Unassessed and Data Deficient reptiles were considerably more likely to be threatened than assessed species, adding to mounting evidence that these species warrant more conservation attention. The overall proportion of threatened species greatly increased when we included our provisional assessments. Assessor identities strongly affected prediction outcomes, suggesting that assessor effects need to be carefully considered in extinction risk assessments. Regions and taxa we identified as likely to be more threatened should be given increased attention in new assessments and conservation planning. Lastly, the method we present here can be easily implemented to help bridge the assessment gap for other less known taxa.


Asunto(s)
Conservación de los Recursos Naturales , Extinción Biológica , Animales , Biodiversidad , Especies en Peligro de Extinción , Humanos , Filogenia , Reptiles
3.
PLoS Biol ; 19(6): e3001210, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34061821

RESUMEN

Global biodiversity loss is a profound consequence of human activity. Disturbingly, biodiversity loss is greater than realized because of the unknown number of undocumented species. Conservation fundamentally relies on taxonomic recognition of species, but only a fraction of biodiversity is described. Here, we provide a new quantitative approach for prioritizing rigorous taxonomic research for conservation. We implement this approach in a highly diverse vertebrate group-Australian lizards and snakes. Of 870 species assessed, we identified 282 (32.4%) with taxonomic uncertainty, of which 17.6% likely comprise undescribed species of conservation concern. We identify 24 species in need of immediate taxonomic attention to facilitate conservation. Using a broadly applicable return-on-investment framework, we demonstrate the importance of prioritizing the fundamental work of identifying species before they are lost.


Asunto(s)
Biodiversidad , Clasificación , Investigación , Animales , Australia , Lagartos/clasificación , Serpientes/clasificación
4.
Mol Phylogenet Evol ; 182: 107757, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36925090

RESUMEN

The progressive aridification of the Australian continent from âˆ¼ 20 million years ago posed severe challenges for the persistence of its resident biota. A key question involves the role of refugial habitats - specifically, their ability to mediate the effects of habitat loss and fragmentation, and their potential to shape opportunities for allopatric speciation. With freshwater species, for example, the patchiness, or absence, of water will constrain distributions. However, aridity may not necessarily isolate populations if disjunct refugia experience frequent hydrological connections. To investigate this potential dichotomy, we explored the evolutionary history of the Chlamydogobius gobies (Gobiiformes: Gobiidae), an arid-adapted genus of six small, benthic fish species that exploit all types of waterbodies (i.e. desert springs, waterholes and bore-fed wetlands, coastal estuarine creeks and mangroves) across parts of central and northern Australia. We used Anchored Phylogenomics to generate a highly resolved phylogeny of the group from sequence data for 260 nuclear loci. Buttressed by companion allozyme and mtDNA datasets, our molecular findings infer the diversification of Chlamydogobius in arid Australia, and provide a phylogenetic structure that cannot be simply explained by invoking allopatric speciation events reflecting current geographic proximity. Our findings are generally consistent with the existing morphological delimitation of species, with one exception: at the shallowest nodes of phylogenetic reconstruction, the molecular data do not fully support the current dichotomous delineation of C. japalpa from C. eremius in Kati Thanda-Lake Eyre-associated waterbodies. Together these findings illustrate the ability of structural (hydrological) connections to generate patterns of connectivity and isolation for an ecologically moderate disperser in response to ongoing habitat aridification. Finally, we explore the implications of these results for the immediate management of threatened (C. gloveri) and critically endangered (C. micropterus, C. squamigenus) congeners.


Asunto(s)
Evolución Biológica , Perciformes , Animales , Filogenia , Australia , Peces/genética , Ecosistema , Perciformes/genética , ADN Mitocondrial/genética
5.
J Anim Ecol ; 92(10): 2094-2108, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37661659

RESUMEN

Climate has a key impact on animal physiology, which in turn can have a profound influence on geographic distributions. Yet, the mechanisms linking climate, physiology and distribution are not fully resolved. Using an integrative framework, we tested the predictions of the climatic variability hypothesis (CVH), which states that species with broader distributions have broader physiological tolerance than range-restricted species, in a group of Lampropholis skinks (8 species, 196 individuals) along a latitudinal gradient in eastern Australia. We investigated several physiological aspects including metabolism, water balance, thermal physiology, thermoregulatory behaviour and ecological performance. Additionally, to test whether organismal information (e.g. behaviour and physiology) can enhance distribution models, hence providing evidence that physiology and climate interact to shape range sizes, we tested whether species distribution models incorporating physiology better predict the range sizes than models using solely climatic layers. In agreement with the CVH, our results confirm that widespread species can tolerate and perform better at broader temperature ranges than range-restricted species. We also found differences in field body temperatures, but not thermal preference, between widespread and range-restricted species. However, metabolism and water balance did not correlate with range size. Biophysical modelling revealed that the incorporation of physiological and behavioural data improves predictions of Lampropholis distributions compared with models based solely on macroclimatic inputs, but mainly for range-restricted species. By integrating several aspects of the physiology and niche modelling of a group of ectothermic animals, our study provides evidence that physiology correlates with species distributions. Physiological responses to climate are central in establishing geographic ranges of skinks, and the incorporation of processes occurring at local scales (e.g. behaviour) can improve species distribution models.


Asunto(s)
Regulación de la Temperatura Corporal , Agua , Humanos , Animales , Australia , Cambio Climático , Temperatura
6.
J Therm Biol ; 114: 103579, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37344018

RESUMEN

Alternative phenotypes allow individuals to pursue different adaptive pathways in response to the same selective challenge. Colour polymorphic species with geographically varying morph frequencies may reflect multiple adaptations to spatial variables such as temperature and climate. We examined whether thermal biology differed between colour morphs of an Australian lizard, the delicate skink, Lampropholis delicata. The delicate skink has two colour pattern morphs, with frequencies varying across latitude and sex: plain (darker, more common at temperate latitudes, more common in males) or striped (lighter, more common at lower latitudes, more common in females). We tested heating and cooling rate, sprint speed, thermal preference, field body temperature and metabolic rate in both morphs and sexes to determine any link between colour and morph frequency distribution. Plain individuals heated more quickly, but other thermal traits showed little variation among morphs. Lampropholis delicata colour influences rates of heat exchange, but the relationship does not appear to be adaptive, suggesting that behavioural thermoregulation homogenises body temperature in the field. While we find no substantial evidence of thermal differences between the two colour morphs, morph-specific behaviour may buffer against differences in heat exchange. Latitudinal variation in species colour may be driven by selection pressures other than temperature.


Asunto(s)
Lagartos , Lagartos/anatomía & histología , Lagartos/clasificación , Lagartos/genética , Lagartos/fisiología , Animales , Pigmentación , Polimorfismo Genético , Masculino , Femenino , Calefacción , Pigmentación de la Piel , Fenómenos Fisiológicos de la Piel
7.
J Therm Biol ; 113: 103530, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37055133

RESUMEN

Changes in thermal environments are a challenge for many ectotherms, as they would have to acclimate their physiology to new thermal environments to maintain high-levels of performance. Time spent basking is key for many ectothermic animals to keep their body temperature within optimal thermal ranges. However, little is known about the impact of changes in basking time on the thermal physiology of ectothermic animals. We investigated how different basking regimes (low intensity vs high intensity) affected key thermal physiological traits of a widespread Australian skink (Lampropholis delicata). We quantified thermal performance curves and thermal preferences of skinks subjected to low and high intensity basking regimes over a 12-week period. We found that skinks acclimated their thermal performance breadth in both basking regimes, with the skinks from the low-intensity basking regime showing narrower performance breadths. Although maximum velocity and optimum temperatures increased after the acclimation period, these traits did not differ between basking regimes. Similarly, no variation was detected for thermal preference. These results provide insight into mechanisms that allow these skinks to successfully overcome environmental constraints in the field. Acclimation of thermal performance curves seems to be key for widespread species to colonise new environments, and can buffer ectothermic animals in novel climatic scenarios.


Asunto(s)
Aclimatación , Lagartos , Animales , Australia , Temperatura , Temperatura Corporal , Lagartos/fisiología
8.
J Exp Biol ; 225(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36354342

RESUMEN

Environments, particularly developmental environments, can generate a considerable amount of phenotypic variation through phenotypic plasticity. Plasticity in response to incubation temperature is well characterised in egg-laying reptiles. However, traits do not always vary independently of one another, and studies encompassing a broad range of traits spanning multiple categories are relatively rare but crucial to better understand whole-organism responses to environmental change, particularly if covariation among traits may constrain plasticity. In this study, we investigated multivariate plasticity in response to incubation across three temperatures in the delicate skink, Lampropholis delicata, and whether this was affected by covariation among traits. At approximately 1 month of age, a suite of growth, locomotor performance, thermal physiology and behavioural traits were measured. Plasticity in the multivariate phenotype of delicate skinks was distinct for different incubation temperatures. Cool temperatures drove shifts in growth, locomotor performance and thermal physiology, while hot temperatures primarily caused changes in locomotor performance and behaviour. These differences are likely due to variation in thermal reaction norms, as there was little evidence that covariation among traits or phenotypic integration influenced plasticity, and there was no effect of incubation temperature on the direction or strength of covariation. While there were broad themes in terms of which trait categories were affected by different incubation treatments, traits appeared to be affected independently by developmental temperature. Comparing reaction norms of a greater range of traits and temperatures will enable better insight into these patterns among trait categories, as well as the impacts of environmental change.


Asunto(s)
Lagartos , Animales , Lagartos/fisiología , Temperatura , Australia , Adaptación Fisiológica/fisiología , Frío , Fenotipo
9.
J Anim Ecol ; 91(2): 404-416, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34800042

RESUMEN

Ecological network structure is maintained by a generalist core of common species. However, rare species contribute substantially to both the species and functional diversity of networks. Capturing changes in species composition and interactions, measured as turnover, is central to understanding the contribution of rare and common species and their interactions. Due to a large contribution of rare interactions, the pairwise metrics used to quantify interaction turnover are, however, sensitive to compositional change in the interactions of, often rare, peripheral specialists rather than common generalists in the network. Here we expand on pairwise interaction turnover using a multi-site metric that enables quantifying turnover in rare to common interactions (in terms of occurrence of interactions). The metric further separates this turnover into interaction turnover due to species turnover and interaction rewiring. We demonstrate the application and value of this method using a host-parasitoid system sampled along gradients of environmental modification. In the study system, both the type and amount of habitat needed to maintain interaction composition depended on the properties of the interactions considered, that is, from rare to common. The analyses further revealed the potential of host switching to prevent or delay species loss, and thereby buffer the system from perturbation. Multi-site interaction turnover provides a comprehensive measure of network change that can, for example, detect ecological thresholds to habitat loss for rare to common interactions. Accurate description of turnover in common, in addition to rare, species and their interactions is particularly relevant for understanding how network structure and function can be maintained.


Asunto(s)
Ecosistema , Animales
10.
Oecologia ; 198(3): 567-578, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34725729

RESUMEN

Physiology is crucial for the survival of invasive species in new environments. Yet, new climatic conditions and the limited genetic variation found within many invasive populations may influence physiological responses to new environmental conditions. Here, we studied the case of the delicate skinks (Lampropholis delicata) invading Lord Howe Island (LHI), Australia. On LHI, the climate is different from the mainland source of the skinks, and independent introduction events generated invasive populations with distinct genetic backgrounds. To understand how climate and genetic background may shape physiological responses along biological invasions, we compared the physiological traits of a source and two invasive (single-haplotype and multi-haplotype) populations of the delicate skink. For each population, we quantified physiological traits related to metabolism, sprint speed, and thermal physiology. We found that, for most physiological traits analysed, population history did not influence the ecophysiology of delicate skinks. However, invasive populations showed higher maximum speed than the source population, which indicates that locomotor performance might be a trait under selection during biological invasions. As well, the invasive population with a single haplotype was less cold-tolerant than the multi-haplotype and source populations. Our results suggest that limited genetic variability and climate may influence physiological responses of invasive organisms in novel environments. Incorporating the interplay between genetic and physiological responses into models predicting species invasions can result in more accurate understanding of the potential habitats those species can occupy.


Asunto(s)
Lagartos , Animales , Australia , Ecosistema , Especies Introducidas , Lagartos/fisiología , Fenotipo
11.
Oecologia ; 200(3-4): 359-369, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36173475

RESUMEN

The social environment is a key factor that influences behavioural traits across a wide array of species. Yet, when investigating individual differences in behaviour, studies tend to measure animals in isolation from other conspecifics-even in social species. Surprisingly, whether behavioural traits measured in isolation are predictive of individual-level behaviour when in social groups is still poorly understood. Here, we repeatedly measured risk-taking behaviour (i.e. boldness; 741 total trials) in both the presence and absence of conspecifics in a social lizard, the delicate skink (Lampropholis delicata). Further, we manipulated food availability during group trials to test whether the effect of the social environment on risk-taking behaviour was mediated by competition over resources. Using 105 lizards collected from three independent populations, we found that individual risk-taking behaviour was repeatable when measured in either social isolation or within groups both with and without food resources available. However, lizards that were bolder during individual trials were not also bolder when in groups, regardless of resource availability. This was largely driven by individual differences in social behavioural plasticity, whereby individual skinks responded differently to the presence of conspecifics. Together, this resulted in a rank order change of individual behavioural types across the social conditions. Our results highlight the importance of the social environment in mediating animal personality traits across varying levels of resource availability. Further, these findings suggest that behavioural traits when measured in isolation, may not reflect individual variation in behaviour when measured in more ecologically realistic social groups.


Asunto(s)
Lagartos , Animales , Conducta Social , Fenotipo , Medio Social , Personalidad , Conducta Animal
12.
Mol Ecol ; 30(21): 5551-5571, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34418206

RESUMEN

Adaptive radiations have proven important for understanding the mechanisms and processes underlying biological diversity. The convergence of form and function, as well as admixture and adaptive introgression, are common in adaptive radiations. However, distinguishing between these two scenarios remains a challenge for evolutionary research. The Midas cichlid species complex (Amphilophus spp.) is a prime example of adaptive radiation, with phenotypic diversification occurring at various stages of genetic differentiation. One species, A. labiatus, has large fleshy lips, is associated with rocky lake substrates, and occurs patchily within Lakes Nicaragua and Managua. By contrast, the similar, but thin-lipped, congener, A. citrinellus, is more common and widespread. We investigated the evolutionary history of the large-lipped form, specifically regarding whether the trait has evolved independently in both lakes from ancestral thin-lipped populations, or via dispersal and/or admixture events. We collected samples from distinct locations in both lakes, and assessed differences in morphology and ecology. Using RAD-seq, we genotyped thousands of SNPs to measure population structure and divergence, demographic history, and admixture. We found significant between-species differences in ecology and morphology, local intraspecific differences in body shape and trophic traits, but only limited intraspecific variation in lip shape. Despite clear ecological differences, our genomic approach uncovered pervasive admixture between the species and low genomic differentiation, with species within lakes being genetically more similar than species between lakes. Taken together, our results suggest a single origin of large-lips, followed by pervasive admixture and adaptive introgression, with morphology being driven by local ecological opportunities, despite ongoing gene-flow.


Las radiaciones adaptativas han demostrado ser clave para entender los mecanismos y procesos responsables de la diversidad biológica. La convergencia en forma y función, así como la mezcla genética y la introgresión adaptativa, son algo común en las radiaciones adaptativas. Sin embargo, distinguir entre estos dos escenarios sigue siendo un desafío para la biología evolutiva. El complejo de especies del cíclido de Midas (Amphilophus spp.) es un ejemplo paradigmático de radiación adaptativa, con diversidad fenotípica en varias etapas de diferenciación genética. Una de las especies, A. labiatus, que tiene labios grandes y carnosos, se asocia a zonas rocosas de los lagos, y tiene una distribución irregular en los lagos Nicaragua y Managua. En cambio, A. citrinellus, es una especie similar pero con labios finos, más común y con una distribución más amplia. Investigamos la historia evolutiva de la especie de labios grandes y, en concreto, si este rasgo ha evolucionado de forma independiente en los dos grandes lagos nicaragüenses a partir de poblaciones ancestrales de labios finos, o si por el contrario se ha dispersado mediante migración y/o mezcla genética. Colectamos muestras de distintas localidades en ambos lagos y evaluamos las diferencias en morfología y ecología. Genotipamos miles de SNPs utilizando RAD-seq para medir la estructura genética, la divergencia, la historia demográfica y la mezcla genética de las poblaciones. Encontramos diferencias significativas entre especies en ecología y morfología, diferencias intraespecíficas locales en la forma del cuerpo y rasgos tróficos, pero sólo una limitada variación intraespecífica en la forma de los labios. A pesar de las claras diferencias ecológicas, el análisis genómico desveló una intensa mezcla genética entre especies, y una limitada diferenciación genómica, encontrando mayor semejanza genética entre especies dentro de un mismo lago, que entre especies de distintos lagos. Nuestros resultados sugieren un origen único de la especie de labios gruesos seguido de mezcla genética e introgresión adaptativa, e indican que la morfología habría sido modelada por las oportunidades ecológicas locales, a pesar del flujo génico.


Asunto(s)
Cíclidos , Animales , Evolución Biológica , Cíclidos/genética , Especiación Genética , Lagos , Nicaragua , Fenotipo
13.
Conserv Biol ; 35(6): 1833-1849, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34289517

RESUMEN

Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard.


RESUMEN: Reconociendo que era imperativo evaluar la recuperación de especies y el impacto de la conservación, la Unión Internacional para la Conservación de la Naturaleza (UICN) convocó en 2012 al desarrollo de una "Lista Verde de Especies" (ahora el Estatus Verde de las Especies de la UICN). Un marco de referencia preliminar de una Lista Verde de Especies para evaluar el progreso de las especies hacia la recuperación, publicado en 2018, proponía 2 componentes separados pero interconectados: un método estandarizado (i.e., medición en relación con puntos de referencia de la viabilidad de especies, funcionalidad y distribución antes del impacto) para determinar el estatus de recuperación actual (puntuación de recuperación de la especie) y la aplicación de ese método para estimar impactos en el pasado y potenciales de conservación basados en 4 medidas (legado de conservación, dependencia de conservación, ganancia de conservación y potencial de recuperación). Probamos el marco de referencia con 181 especies representantes de diversos taxa, historias de vida, biomas, y categorías (riesgo de extinción) en la Lista Roja de la IUCN. Con base en la distribución observada de la puntuación de recuperación de las especies, proponemos las siguientes categorías de recuperación de la especie: totalmente recuperada, ligeramente mermada, moderadamente mermada, mayormente mermada, gravemente mermada, extinta en estado silvestre, e inderterminada. Cincuenta y nueve por ciento de las especies se consideraron mayormente o gravemente mermada. Aunque hubo una relación negativa entre el riesgo de extinción y la puntuación de recuperación de la especie, la variación fue considerable. Algunas especies en las categorías de riesgo bajas fueron evaluadas como más lejos de recuperarse que aquellas con alto riesgo. Esto enfatiza que la recuperación de especies es diferente conceptualmente al riesgo de extinción y refuerza la utilidad del Estado Verde de las Especies de la UICN para comprender integralmente el estatus de conservación de especies. Aunque el riesgo de extinción no predijo el legado de conservación, la dependencia de conservación o la ganancia de conservación, se correlacionó positivamente con la potencial de recuperación. Solo 1.7% de las especies probadas fue categorizado como cero en los 4 indicadores de impacto de la conservación, lo que indica que la conservación ha jugado, o jugará, un papel en la mejoría o mantenimiento del estatus de la especie la gran mayoría de ellas. Con base en nuestros resultados, diseñamos una versión actualizada del marco de referencia para la evaluación que introduce la opción de utilizar una línea de base dinámica para evaluar los impactos futuros de la conservación en el corto plazo y redefine corto plazo como 10 años.


Asunto(s)
Especies en Peligro de Extinción , Extinción Biológica , Animales , Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Riesgo
14.
J Therm Biol ; 91: 102623, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32716872

RESUMEN

Thermally variable environments are particularly challenging for ectotherms as physiological functions are thermo-dependent. As a consequence, ectotherms in highly seasonal environments are predicted to have greater thermal plasticity. However, much of our understanding of thermal plasticity comes from controlled experiments in a laboratory setting. Relatively fewer studies investigate thermal plasticity in free-ranging animals living in their natural environment. We investigated the presence of thermal plasticity within a single activity season in adult males of a natural high elevation population of White's skink (Liopholis whitii) in south-eastern Australia. This species lives in a permanent home site (rock crevice and/or burrow), facilitating the repeated capture of the same individuals across the activity season. We monitored the thermal variation across the field site and over the activity season, and tested thermal tolerances and performance of male L. whitii on three occasions across their activity season. Maximum and average temperatures varied across the field site, and temperatures gradually increased across the study period. Evidence of temporal plasticity was identified in the critical thermal minimum and thermal tolerance breadth, but not in the critical thermal maximum. Thermal performance was also found to be plastic, but no temporal patterns were evident. Our temporal plasticity results are consistent which much of the previous literature, but this is one of the first studies to identify these patterns in a free-ranging population. In addition, our results indicate that performance may be more plastic than previous literature suggests. Overall, our study highlights the need to pair laboratory and field studies in order to understand thermal plasticity in an ecologically relevant context.


Asunto(s)
Aclimatación , Temperatura Corporal , Lagartos/fisiología , Animales , Ecosistema , Movimiento , Estaciones del Año
15.
Proc Biol Sci ; 286(1908): 20191372, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31409252

RESUMEN

Females and males have distinct trait optima, resulting in selection for sexual dimorphism. However, most traits have strong cross-sex genetic correlations, which constrain evolutionary divergence between the sexes and lead to protracted periods of maladaptation during the evolution of sexual dimorphism. While such constraints are thought to be costly in terms of individual and population fitness, it remains unclear how severe such costs are likely to be. Building upon classical models for the 'cost of selection' in changing environments (sensu Haldane), we derived a theoretical expression for the analogous cost of evolving sexual dimorphism; this cost is a simple function of genetic (co)variances of female and male traits and sex differences in trait optima. We then conducted a comprehensive literature search, compiled quantitative genetic data from a diverse set of traits and populations, and used them to quantify costs of sexual dimorphism in the light of our model. For roughly 90% of traits, costs of sexual dimorphism appear to be modest, and comparable to the costs of fixing one or a few beneficial substitutions. For the remaining traits (approx. 10%), sexual dimorphism appears to carry a substantial cost-potentially orders of magnitude greater than costs of selection during adaptation to environmental changes.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Fenotipo , Caracteres Sexuales , Animales , Femenino , Masculino , Modelos Biológicos
16.
J Anim Ecol ; 88(2): 211-222, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30291749

RESUMEN

The accurate estimation of interaction network structure is essential for understanding network stability and function. A growing number of studies evaluate under-sampling as the degree of sampling completeness (proportional richness observed). How the relationship between network structural metrics and sampling completeness varies across networks of different sizes remains unclear, but this relationship has implications for the within- and between-system comparability of network structure. Here, we test the combined effects of network size and sampling completeness on the structure of spatially distinct networks (i.e., subwebs) in a host-parasitoid model system to better understand the within-system variability in metric bias. Richness estimates were used to quantify a gradient of sampling completeness of species and interactions across randomly subsampled subwebs. The combined impacts of network size and sampling completeness on the estimated values of twelve unweighted and weighted network metrics were tested. The robustness of network metrics to under-sampling was strongly related to network size, and sampling completeness of interactions were generally a better predictor of metric bias than sampling completeness of species. Weighted metrics often performed better than unweighted metrics at low sampling completeness; however, this was mainly evident at large rather than small subweb size. These outcomes highlight the significance of under-sampling for the comparability of both unweighted and weighted network metrics when networks are small and vary in size. This has implications for within-system comparability of species-poor networks and, more generally, reveals problems with under-sampling ecological networks that may otherwise be difficult to detect in species-rich networks. To mitigate the impacts of under-sampling, more careful considerations of system-specific variation in metric bias are needed.


Asunto(s)
Modelos Biológicos , Animales
17.
Oecologia ; 189(3): 611-620, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30725369

RESUMEN

The environment experienced by a mother can have profound effects on the fitness of her offspring (i.e., maternal effects). Maternal effects can be adaptive when the developmental environments experienced by offspring promote phenotypes that provide fitness benefits either via matching offspring phenotype to the post-developmental environment (also known as anticipatory maternal effects) or through direct effects on offspring growth and survival. We tested these hypotheses in a viviparous lizard using a factorial experimental design in which mothers received either high or low amounts of food during gestation, and resultant offspring were raised on either high or low amounts of food post-birth. We found no effect of food availability during gestation on reproductive traits of mothers or offspring traits at birth. However, offspring from mothers who received low food during gestation exhibited a greater increase in condition in the post-birth period, suggesting some form of priming of offspring by mothers to cope with an anticipated poor environment after birth. Offspring that received low food during gestation were also more likely to die, suggesting a trade-off for this accelerated growth. There were also significant effects of post-birth food availability on offspring snout-vent length and body condition growth, with offspring with high food availability post birth doing better. However, the effects of the pre- and post-natal resource evnironment on offspring growth were independent on one another, therefore, providing no support for the presence of anticipatory maternal effects in the traditional sense.


Asunto(s)
Lagartos , Animales , Femenino , Alimentos , Madres , Fenotipo , Reproducción
18.
J Anim Ecol ; 87(6): 1667-1684, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30098209

RESUMEN

Phenotypic variation provides the framework for natural selection to work upon, enabling adaptive evolution. One of the most discernible manifestations of phenotypic variability is colour variation. When this variation is discrete, genetically based colour pattern morphs occur simultaneously within a population. Why and how colour polymorphisms are maintained is an evolutionary puzzle. Several evolutionary drivers have been hypothesized as influencing clinal patterns of morph frequency, with spatial variation in climate and predation being considered especially important. Despite this, no study has examined both of their roles simultaneously. The aims of this study were to: (a) examine the covariation of physiology, environmental variables and colouration at a local scale; and (b) determine if these factors and their interplay explain broad clinal variation in morph frequency. We used the lizard Liopholis whitii as a model system, as this species displays a discrete, heritable polymorphism for colour pattern (plain-backed, patterned morphs) whose morph frequency varies latitudinally. We measured reflectance, field activity temperatures and microhabitat structure to test for differences in crypsis, thermal biology and microhabitat selection of patterned and plain-backed morphs within a single population where colour morphs occur sympatrically. We then used data from the literature to perform a broad-scale analysis to identify whether these factors also explained the latitudinal variation of morph frequency in this species. At the local scale, plain-backed morphs were found to be less cryptic than patterned morphs while no other differences were detected in terms of thermal biology, dorsal reflectance and microhabitat use. At a broader scale, predation was the most influential factor mediating morph frequency across latitudes. However, the observed pattern of morph frequency is opposite to what the modelling results suggest in that the incidence of the least cryptic morph is highest where predation pressure is most severe. Clinal variation in the level of background matching between morphs or the potential reproductive advantage by the plain-backed morph may, instead, be driving the observed morph frequency. Together, these results provide key insights into the evolution of local adaptation as well as the ecological forces involved in driving the dynamics of colour polymorphism.


Asunto(s)
Lagartos , Conducta Predatoria , Animales , Aves , Color , Pigmentación , Selección Genética
19.
J Anim Ecol ; 87(6): 1653-1666, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30047994

RESUMEN

Once established in new areas, introduced species may exhibit changes in their biology due to phenotypic plasticity, novel selection pressures and genetic drift. Moreover, the introduction process itself has been hypothesised to act as a selective filter for traits that promote invasiveness. We tested the hypothesis that behaviours thought to promote invasiveness-such as increased foraging activity and aggression-are selected for during invasion by comparing traits among native and introduced populations of the widespread Argentine ant (Linepithema humile). We studied Argentine ant populations in the native range in Argentina and in three invaded regions along an introduction pathway: California, Australia and New Zealand. In each region, we set up 32 experimental colonies to measure foraging activity and interspecific aggression in a subset of the study regions. These colonies were subject to experimental manipulation of carbohydrate availability and octopamine, a biogenic amine known to modulate behaviour in insects, to measure variation in behavioural plasticity. We found variation in foraging activity among populations, but this variation was not consistent with selection on behaviour in relation to the invasion process. We found that colonies with limited access to carbohydrates exhibited unchanged exploratory behaviour, but higher exploitation activity and lower aggression. Colonies given octopamine consistently increased foraging behaviour (both exploration and exploitation), as well as aggression when also sugar-deprived. There was no difference in the degree of behavioural response to our experimental treatments along the introduction pathway. We did not find support for selection of behavioural traits associated with invasiveness along the Argentine ant's introduction pathway or clear evidence for an association between the introduction process and variation in behavioural plasticity. These results indicate that mechanisms promote behavioural variation in a similar fashion both in native and introduced ranges. Our results challenge the assumption that introduced populations always perform better in key behavioural traits hypothesised to be associated with invasion success.


Asunto(s)
Hormigas , Animales , Argentina , Australia , California , Nueva Zelanda
20.
Int J Biometeorol ; 62(5): 873-882, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29242979

RESUMEN

The strong association between amphibian activity, breeding and recruitment with local environmental conditions raises concerns regarding how changes in climate may affect the persistence of species populations into the future. Additionally, in a highly diverse assemblage of anurans, competition for breeding sites affects the time and duration of activity, as species compete for limited resources such as water. Meteorological conditions are strong drivers of amphibian activity, so we assessed whether temperature, rainfall, atmospheric pressure and humidity were associated with the calling phenology of an assemblage of anurans in South East Queensland, Australia. We performed calling surveys and collected digital recordings at 45 ponds in an area known for high anuran diversity. We performed detection analyses to investigate the influence of 10 meteorological variables in detection of calling activity in 19 amphibian species. Our results suggest four breeding strategies in the assemblage: explosive summer breeders, prolonged breeders, opportunistic breeders and a winter breeder. Classifying these species into associations provides a framework for understanding how species respond to environmental conditions. Explosive breeders (i.e. species demonstrating short and highly synchronised breeding periods) were particularly responsive to temperature. Our findings help elucidate the breeding phenology of frogs and provide valuable information on their mating systems in native Australian forests. This study highlights the difficulties of surveying even common anurans. We highlight the importance of predictability and stability in climate and the vulnerability of species for which reproduction appears to require highly specific environmental cues.


Asunto(s)
Anuros/fisiología , Vocalización Animal , Tiempo (Meteorología) , Animales , Masculino , Queensland , Reproducción , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA