RESUMEN
A Gram-stain-negative bacterium, isolated from a human wound was previously found to share an unprecedentedly close relationship with Sodalis glossinidius and other members of the Sodalis-allied clade of insect symbionts. This relationship was inferred from sequence analysis of the 16S rRNA gene and genomic comparisons and suggested the strain belonged to a novel species. Biochemical and genetic analyses supported this suggestion and demonstrated that the organism has a wide repertoire of metabolic properties, which is consistent with the presence of a relatively large gene inventory. Among members of the Sodalis-allied clade, this is the first representative that has sufficient metabolic capabilities to sustain growth in minimal media. On the basis of the results of this study, we propose that this organism be classified as a representative of a novel species, Sodalis praecaptivus sp. nov. (type strain HS(T) = DSM 27494(T) = ATCC BAA-2554(T)).
Asunto(s)
Enterobacteriaceae/clasificación , Filogenia , Heridas y Lesiones/microbiología , Anciano , Animales , Proteínas Bacterianas/genética , Composición de Base , Chaperonina 60/genética , ADN Bacteriano/genética , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación , Genoma Bacteriano , Humanos , Insectos/microbiología , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , SimbiosisRESUMEN
Sodalis praecaptivus is a close relative and putative environmental progenitor of the widely distributed, insect-associated, Sodalis-allied symbionts. Here we show that mutant strains of S. praecaptivus that lack genetic components of a quorum-sensing (QS) apparatus have a rapid and potent killing phenotype following microinjection into an insect host. Transcriptomic and genetic analyses indicate that insect killing occurs as a consequence of virulence factors, including insecticidal toxins and enzymes that degrade the insect integument, which are normally repressed by QS at high infection densities. This method of regulation suggests that virulence factors are only utilized in early infection to initiate the insect-bacterial association. Once bacteria reach sufficient density in host tissues, the QS circuit represses expression of these harmful genes, facilitating a long-lasting and benign association. We discuss the implications of the functionality of this QS system in the context of establishment and evolution of mutualistic relationships involving these bacteria.