Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 326(2): C317-C330, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38073487

RESUMEN

Small organic molecules in the intestinal lumen, particularly short-chain fatty acids (SCFAs) and glucose, have long been postulated to enhance calcium absorption. Here, we used 45Ca radioactive tracer to determine calcium fluxes across the rat intestine after exposure to glucose and SCFAs. Confirming previous reports, glucose was found to increase the apical-to-basolateral calcium flux in the cecum. Under apical glucose-free conditions, SCFAs (e.g., butyrate) stimulated the cecal calcium fluxes by approximately twofold, while having no effect on proximal colon. Since SCFAs could be absorbed into the circulation, we further determined whether basolateral SCFA exposure rendered some positive actions. It was found that exposure of duodenum and cecum on the basolateral side to acetate or butyrate increased calcium fluxes. Under butyrate-rich conditions, cecal calcium transport was partially diminished by Na+/H+ exchanger 3 (NHE3) inhibitor (tenapanor) and nonselective transient receptor potential vanilloid subfamily 6 (TRPV6) inhibitor (miconazole). To confirm the contribution of TRPV6 to SCFA-stimulated calcium transport, we synthesized another TRPV6 inhibitor that was demonstrated by in silico molecular docking and molecular dynamics to occlude TRPV6 pore and diminish the glucose- and butyrate-induced calcium fluxes. Therefore, besides corroborating the importance of luminal molecules in calcium absorption, our findings provided foundation for development of more effective calcium-rich nutraceuticals in combination with various absorptive enhancers, e.g., glucose and SCFAs.NEW & NOTEWORTHY Organic molecules in the intestinal lumen, e.g., glucose and short-chain fatty acids (SCFAs), the latter of which are normally produced by microfloral fermentation, can stimulate calcium absorption dependent on transient receptor potential vanilloid subfamily 6 (TRPV6) and Na+/H+ exchanger 3 (NHE3). A selective TRPV6 inhibitor synthesized and demonstrated by in silico docking and molecular dynamics to specifically bind to the pore domain of TRPV6 was used to confirm a significant contribution of this channel. Our findings corroborate physiological significance of nutrients and SCFAs in enhancing calcium absorption.


Asunto(s)
Calcio , Ácidos Grasos Volátiles , Ratas , Animales , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Calcio/metabolismo , Simulación del Acoplamiento Molecular , Ácidos Grasos Volátiles/farmacología , Ácidos Grasos Volátiles/metabolismo , Butiratos/farmacología , Proteínas Portadoras/metabolismo , Duodeno/metabolismo , Glucosa/metabolismo , Absorción Intestinal
2.
FASEB J ; 37(11): e23262, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37855727

RESUMEN

Obesity accelerates the aging processes, resulting in an aggravation of aging-induced osteoporosis. We investigated the anti-osteoporotic effect of hyperbaric oxygen therapy (HBOT) in obese- and lean-aged rats through measurement of cellular senescence, hypoxia, inflammation, antioxidants, and bone microarchitecture. Obese and lean male Wistar rats were injected with 150 mg/kg/day of D-galactose for 8 weeks to induce aging. Then, all rats were randomly given either sham or HBOT for 14 days. Metabolic parameters were determined. Expression by bone mRNA for cellular senescence, hypoxia, inflammation, antioxidative capacity, and bone remodeling were examined. Micro-computed tomography and atomic absorption spectroscopy were performed to evaluate bone microarchitecture and bone mineral profiles, respectively. We found that HBOT restored the alterations in the mRNA expression level of p16, p21, HIF-1α, TNF-α, IL-6, RANKL, RANK, NFATc1, DC-STAMP, Osx, ALP, and Col1a1 in the bone in obese-and lean- aging rats. In obese-aging rats, HBOT increased the level of expression of Sirt1 and CuZnSOD mRNA and diminished the expression level of HIF-2α and ctsk mRNA to the same levels as the control group. However, HBOT failed to alter catalase and OCN mRNA expression in obese-aged rats. HBOT partially improved the bone microarchitecture in obese-aged rats, but completely restored it in lean-aged rats. Interestingly, HBOT protected against obesity-induced demineralization in obese-aged rats. In summary, HBOT exerts an anti-osteoporotic effect in lean-aged rats and prevents some, but not all the negative effects of obese-aged conditions on bone health. Therefore, HBOT is considered as a potential therapy for aging-induced osteoporosis, regardless of obese status.


Asunto(s)
Oxigenoterapia Hiperbárica , Osteoporosis , Ratas , Masculino , Animales , Ratas Wistar , Galactosa , Microtomografía por Rayos X , Obesidad/complicaciones , Obesidad/terapia , Osteoporosis/etiología , Osteoporosis/terapia , Inflamación , Hipoxia , ARN Mensajero
3.
Biochem Biophys Res Commun ; 659: 105-112, 2023 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-37060830

RESUMEN

Fibroblast growth factor (FGF)-23 and calcium-sensing receptor (CaSR) have previously been postulated to be parts of a negative feedback regulation of the intestinal calcium absorption to prevent excessive calcium uptake and its toxicity. However, the underlying mechanism of this feedback regulation remained elusive, especially whether it required transcription of FGF-23. Herein, we induced calcium hyperabsorptive state (CHS) by exposing intestinal epithelium-like Caco-2 monolayer to 30 mM CaCl2 and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] after which FGF-23 mRNA levels and transepithelial calcium flux were determined. We found that CHS upregulated FGF-23 transcription, which was reverted by CaSR inhibitors (Calhex-231 and NPS2143) but without effect on CaSR transcription. Although 10 nM 1,25(OH)2D3 was capable of enhancing transepithelial calcium flux, the higher-than-normal calcium inundation as in CHS led to a decrease in calcium flux, consistent with an increase in FGF-23 protein expression. Administration of inhibitors (≤10 µM CN585 and cyclosporin A) of calcineurin, a mediator of CaSR action to control transcription and production of its target proteins, was found to partially prevent FGF-23 protein production and the negative effect of CHS on calcium transport, while having no effect on FGF-23 mRNA expression. Direct exposure to FGF-23, but not FGF-23 + PD173074 (FGFR1/3 inhibitor), also completely abolished the 1,25(OH)2D3-enhanced calcium transport in Caco-2 monolayer. Nevertheless, CHS and CaSR inhibitors had no effect on the mRNA levels of calcineurin (PPP3CB) or its targets (i.e., NFATc1-4). In conclusion, exposure to CHS induced by high apical calcium and 1,25(OH)2D3 triggered a negative feedback mechanism to prevent further calcium uptake. CaSR and its downstream mediator, calcineurin, possibly contributed to the regulatory process, in part by enhancing FGF-23 production to inhibit calcium transport. Our study, therefore, corroborated the physiological significance of CaSR-autocrine FGF-23 axis as a local feedback loop for prevention of excessive calcium uptake.


Asunto(s)
Calcio , Receptores Sensibles al Calcio , Humanos , Células CACO-2 , Calcineurina , Calcio/metabolismo , Calcio de la Dieta , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo , ARN Mensajero/genética
4.
Arch Orthop Trauma Surg ; 143(2): 729-738, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34453570

RESUMEN

INTRODUCTION: Knee Osteoarthritis (OA) is a degenerative joint disease that needs consistent exercise and an accurate understanding of the condition for long-term maintenance. While the accessibility of outpatient care is essential for disease management, many patients lack the resources to receive adequate healthcare. To address this challenge, we developed a not-for-profit interactive mobile application that provides a disease-specific educational background and a structured exercise regimen to patients. MATERIAL AND METHODS: "Rak Kao" (English translation: Love-Your-Knee) mobile application was designed to analyze the questionnaire data to assess the stage of knee OA and generate a personalized recommendation of treatment and exercise type using rule-based and Artificial Intelligence (AI) techniques. A single-blinded study was conducted with patients (n = 82) who were randomly assigned to the mobile application group (M-group) and the handout group (H-group). Patient groups were controlled for age, gender, BMI, onset of pain, grade of disease, education level, and occupation. Accuracy in performance of three prescribed knee exercises (catch-bend-down, stretch-touch-feet, and sit-stretch-hold) was evaluated. Clinical outcomes were evaluated before and after the 4-weeks program to assess the range of motion, symptoms, pain, physical activity, and quality of life via the KOOS and KSS scores. RESULTS: Completion of the study led to significantly more overall exercise accuracy in the M-group (76.2%) than the H-group (52.5%). Activities of daily life, quality of life, ability to do sports and recreational activities were significantly more improved in the M-group than the H-group (p < .01). No difference in the range of motion between groups. Satisfaction of patients' experience was higher in the M-group than the H-group (p = .001) after the 4-week regimen. CONCLUSIONS: With the better accuracy and outcomes for rehabilitation in the M-group than the H-group, we strongly recommend using our mobile application as a better alternative than handouts for exercises and information for patients with knee OA. TRIAL REGISTRATION: ClinicalTrials.gov: NCT03666585.


Asunto(s)
Aplicaciones Móviles , Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/tratamiento farmacológico , Calidad de Vida , Inteligencia Artificial , Terapia por Ejercicio/métodos , Ejercicio Físico , Dolor , Resultado del Tratamiento
5.
Am J Physiol Cell Physiol ; 320(3): C270-C278, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33356945

RESUMEN

Whether the intestinal mucosal cells are capable of sensing calcium concentration in the lumen and pericellular interstitium remains enigmatic for decades. Most calcium-regulating organs, such as parathyroid gland, kidney, and bone, are capable of using calcium-sensing receptor (CaSR) to detect plasma calcium and trigger appropriate feedback responses to maintain calcium homeostasis. Although both CaSR transcripts and proteins are abundantly expressed in the crypt and villous enterocytes of the small intestine as well as the surface epithelial cells of the large intestine, the studies of CaSR functions have been limited to amino acid sensing and regulation of epithelial fluid secretion. Interestingly, several lines of recent evidence have indicated that the enterocytes use CaSR to monitor luminal and extracellular calcium levels, thereby reducing the activity of transient receptor potential channel, subfamily V, member 6, and inducing paracrine and endocrine feedback responses to restrict calcium absorption. Recent investigations in zebra fish and rodents have also suggested the role of fibroblast growth factor (FGF)-23 as an endocrine and/or paracrine factor participating in the negative control of intestinal calcium transport. In this review article, besides the CaSR-modulated ion transport, we elaborate the possible roles of CaSR and FGF-23 as well as their crosstalk as parts of a negative feedback loop for counterbalancing the seemingly unopposed calciotropic effect of 1,25-dihydroxyvitamin D3 on the intestinal calcium absorption.


Asunto(s)
Calcio/metabolismo , Mucosa Intestinal/metabolismo , Transporte Iónico/fisiología , Iones/metabolismo , Receptores Sensibles al Calcio/metabolismo , Animales , Factor-23 de Crecimiento de Fibroblastos , Humanos , Intestinos/fisiología
6.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L997-L1009, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32936026

RESUMEN

The gasotransmitter carbon monoxide (CO) regulates fluid and electrolyte movements across epithelial tissues. However, its action on anion channels is incompletely understood. Here, we investigate the direct action of CO on the cystic fibrosis transmembrane conductance regulator (CFTR) by applying CO-releasing molecules (CO-RMs) to the intracellular side of excised inside-out membrane patches from cells heterologously expressing wild-type human CFTR. Addition of increasing concentrations of tricarbonyldichlororuthenium(II) dimer (CORM-2) (1-300 µM) inhibited CFTR channel activity, whereas the control RuCl3 (100 µM) was without effect. CORM-2 predominantly inhibited CFTR by decreasing the frequency of channel openings and, hence, open probability (Po). But, it also reduced current flow through open channels with very fast kinetics, particularly at elevated concentrations. By contrast, the chemically distinct CO-releasing molecule CORM-3 inhibited CFTR by decreasing Po without altering current flow through open channels. Neither depolarizing the membrane voltage nor raising the ATP concentration on the intracellular side of the membrane affected CFTR inhibition by CORM-2. Interestingly, CFTR inhibition by CORM-2, but not by CFTRinh-172, was prevented by prior enhancement of channel activity by the clinically approved CFTR potentiator ivacaftor. Similarly, when added after CORM-2, ivacaftor completely relieved CFTR inhibition. In conclusion, CORM-2 has complex effects on wild-type human CFTR consistent with allosteric inhibition and open-channel blockade. Inhibition of CFTR by CO-releasing molecules suggests that CO regulates CFTR activity and that the gasotransmitter has tissue-specific effects on epithelial ion transport. The action of ivacaftor on CFTR Cl- channels inhibited by CO potentially expands the drug's clinical utility.


Asunto(s)
Monóxido de Carbono/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Transporte Iónico/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Monóxido de Carbono/metabolismo , Humanos
7.
Biochem Biophys Res Commun ; 523(3): 816-821, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-31954520

RESUMEN

Parathyroid hormone (PTH) enhances cystic fibrosis transmembrane conductance regulator (CFTR)-mediated anion secretion by the human intestinal epithelial cell line Caco-2. With the patch-clamp and Ussing chamber techniques, we investigated how PTH stimulates CFTR activity in Caco-2 cells. Cell-attached recordings revealed that PTH stimulated the opening of CFTR-like channels, while impedance analysis demonstrated that PTH increased apical membrane capacitance, a measure of membrane surface area. Using ion substitution experiments, the PTH-stimulated increase in short-circuit current (Isc), a measure of transepithelial ion transport, was demonstrated to be Cl-- and HCO3--dependent. However, the PTH-stimulated increase in Isc was unaffected by the carbonic anhydrase inhibitor acetazolamide, but partially blocked by the intermediate-conductance Ca2+-activated K+ channel (IKCa) inhibitor clotrimazole. TRAM-34, a related IKCa inhibitor, failed to directly inhibit CFTR Cl- channels in cell-free membrane patches, excluding its action on CFTR. In conclusion, PTH enhances CFTR-mediated anion secretion by Caco-2 monolayers by increasing the expression and function of CFTR in the apical membrane and IKCa activity in the basolateral membrane.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Mucosa Intestinal/metabolismo , Hormona Paratiroidea/metabolismo , Aniones/metabolismo , Células CACO-2 , Regulador de Conductancia de Transmembrana de Fibrosis Quística/análisis , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Mucosa Intestinal/citología , Transporte Iónico , Regulación hacia Arriba
8.
Eur J Nutr ; 59(4): 1453-1462, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31123863

RESUMEN

PURPOSE: The chronic consumption of a high-fat diet (HFD) induces obese-insulin resistance and impairs jawbone health via gut dysbiosis-stimulated inflammatory process. Our previous studies demonstrated that the probiotic Lactobacillus paracasei HII01, prebiotic xylooligosaccharide (XOS), and synbiotics improved several vital organ functions by reducing gut dysbiosis in HFD-induced obese rats. However, the impacts on the cellular level of jawbone microarchitecture have not been examined. Here, we hypothesized that the supplementation of L. paracasei HII01, XOS, and synbiotics ameliorated the bone microarchitectural pathology in HFD-fed rats by reducing systemic inflammation and other metabolic parameters. METHODS: The dietary regimes (normal or high-fat diet) were provided to 48 male Wistar rats throughout 24-week experiment. After week 12, rats were given either a vehicle, pro-, pre-, or synbiotic for an additional 12 weeks before being killed. Then, blood analyses and bone histomorphometry of the jawbones were performed. RESULTS: The HFD-fed rats developed obese-insulin resistance with significantly elevated systemic inflammation. Bone histomorphometry of these rats showed a decrease in trabecular thickness with increased osteoclasts and active erosion surfaces. Mineral apposition and bone-formation rates were also remarkably diminished. The treatment with pro-, pre-, and synbiotics equally improved metabolic disturbance, reduced systemic inflammation, increased trabecular thickness, decreased osteoclasts and active erosion surfaces and restored mineral apposition and bone-formation rates. CONCLUSION: The probiotic L. paracasei HII01, prebiotic XOS, and the synbiotics had similarly beneficial effects to improve jawbone microarchitecture in HFD-fed rats by possibly ameliorating osteoclast-related bone resorption and potentiating bone-formation activities.


Asunto(s)
Enfermedades Óseas/prevención & control , Microbioma Gastrointestinal/efectos de los fármacos , Inflamación/prevención & control , Lacticaseibacillus paracasei , Mandíbula/efectos de los fármacos , Obesidad/complicaciones , Animales , Enfermedades Óseas/etiología , Modelos Animales de Enfermedad , Inflamación/etiología , Resistencia a la Insulina , Masculino , Obesidad/patología , Ratas , Ratas Wistar
9.
Am J Physiol Endocrinol Metab ; 317(4): E646-E657, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31361547

RESUMEN

Estrogen deprivation accelerates bone resorption, leading to imbalance of bone remodeling and osteoporosis in postmenopausal women. In the elderly, type 2 diabetes mellitus (T2DM) frequently coexists as an independent factor of bone loss. However, little is known about the skeletal changes in a combined condition of estrogen deficiency and T2DM. Herein, we performed ovariectomy (OVX) in nonobese Goto-Kakizaki (GK) T2DM rats to examine changes associated with calcium and phosphate metabolism and bone microstructures and strength. As expected, wild-type (WT) rats subjected to ovariectomy (OVX-WT) had low trabecular bone volume and serum calcium with increased dynamic histomorphometric and serum bone markers, consistent with the high turnover state. T2DM in GK rats also led to low trabecular volume and serum calcium. However, the dynamic histomorphometric markers of bone remodeling were unaffected in these GK rats, indicating the distinct mechanism of T2DM-induced bone loss. Interestingly, OVX-GK rats were found to have anomalous and unique changes in bone turnover-related parameters, i.e., decreased osteoblast and osteoclast surfaces with lower COOH-terminal telopeptide of type I collagen levels compared with OVX-WT rats. Furthermore, the levels of calciotropic hormones, i.e., parathyroid hormone and 1,25(OH)2D3, were significantly decreased in OVX-GK rats. Although the OVX-induced bone loss did not further worsen in GK rats, a three-point bending test indicated that OVX-GK bones exhibited a decrease in bone elasticity. In conclusion, T2DM and estrogen deficiency both led to microstructural bone loss, the appearance of which did not differ from each factor alone. Nevertheless, the combination worsened the integrity and suppressed the turnover, which might eventually result in adynamic bone disease.


Asunto(s)
Enfermedades Óseas Metabólicas/patología , Diabetes Mellitus Tipo 2/patología , Estrógenos/deficiencia , Osteoporosis/patología , Ovariectomía , Animales , Biomarcadores/sangre , Densidad Ósea , Enfermedades Óseas Metabólicas/metabolismo , Remodelación Ósea , Calcitriol/sangre , Calcio/sangre , Colágeno Tipo I/biosíntesis , Elasticidad , Femenino , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Hormona Paratiroidea/sangre , Ratas , Ratas Wistar
10.
Eur J Nutr ; 58(7): 2801-2810, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30251017

RESUMEN

PURPOSE: Chronic high-fat diet (HFD) consumption results in gut dysbiosis, systemic inflammation, obese-insulin resistance, and osteoporosis of the jawbones. The probiotics, prebiotics or synbiotics alleviated gut dysbiosis and the metabolic disturbance in HFD-induced obesity. However, the effects on jawbone properties have not been investigated. This study aimed to investigate the effects of probiotic Lactobacillus paracasei HII01, prebiotic xylooligosaccharide (XOS), and synbiotics on the jawbone properties along with metabolic parameters, gut and systemic inflammation in HFD-fed rats. METHODS: Forty-eight male Wistar rats were fed with either a HFD or normal diet for 12 weeks. Rats in each group were subdivided into four subgroups to be treated with either vehicle, probiotics, prebiotics, or synbiotics for the additional 12 weeks. Blood samples, gut, bone marrows, and jawbones were collected to determine metabolic parameters, inflammation, and bone properties. RESULTS: The HFD-fed rats developed obese-insulin resistance, as indicated by increased body weight, dyslipidemia and decreased insulin sensitivity. Serum lipopolysaccharide levels and interleukin-6 mRNA expression in the ileum and bone marrows were elevated. Altered bone metabolism and the impaired jawbone properties were evident as indicated by decreased bone mineral density with increased trabecular separation. Reduced ultimate load and stiffness were observed in HFD-fed rats. Treatments with probiotics, prebiotics or synbiotics in HFD-fed rats improved metabolic parameters and reduced inflammation. However, no alterations in jawbone properties were found in all treatments. CONCLUSION: The osteoporosis of the jawbone occurred in obese-insulin resistance, and treatments with probiotics, prebiotics and synbiotics were not sufficient to improve the jawbone properties.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Resistencia a la Insulina , Maxilares/efectos de los fármacos , Obesidad/fisiopatología , Prebióticos/administración & dosificación , Probióticos/farmacología , Simbióticos/administración & dosificación , Animales , Modelos Animales de Enfermedad , Masculino , Probióticos/administración & dosificación , Ratas , Ratas Wistar
11.
Arch Biochem Biophys ; 657: 15-22, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30217510

RESUMEN

Long-term high-calcium intake and intestinal calcium hyperabsorption are hazardous to the body. It is hypothesized that enterocytes possess mechanisms for preventing superfluous calcium absorption, including secretion of negative regulators of calcium absorption and utilization of calcium-sensing receptor (CaSR) to detect luminal calcium. Herein, Caco-2 monolayers were treated with high doses of 1,25(OH)2D3 to induce calcium hyperabsorption or directly exposed to high apical calcium. The expression of counterregulatory factor of calcium absorption, fibroblast growth factor (FGF)-23, was also investigated in the intestine of lactating rats, which physiologically exhibit calcium hyperabsorption. We found that FGF-23 expression was enhanced in all intestinal segments of lactating rats. In Caco-2 monolayers, high apical calcium and 1,25(OH)2D3 induced FGF-23 secretion into culture media. FGF-23 antagonized 1,25(OH)2D3-induced calcium transport and led to a significant, but small, change in paracellular permeability. Furthermore, high-dose 1,25(OH)2D3 upregulated FGF-23 expression, which was prevented by CaSR inhibitors. Activation of apical CaSR by cinacalcet and AC-265347 abolished 1,25(OH)2D3-induced calcium transport in a dose-dependent manner. In conclusion, the intestinal FGF-23 expression was upregulated in conditions with calcium hyperabsorption, presumably to help protect against excessive calcium absorption, while CaSR probably monitored calcium in the lumen and induced FGF-23 production for preventing superfluous calcium uptake.


Asunto(s)
Benzotiazoles/farmacología , Calcitriol/metabolismo , Calcio/metabolismo , Cinacalcet/farmacología , Absorción Intestinal/efectos de los fármacos , Receptores Sensibles al Calcio/agonistas , Animales , Células CACO-2 , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Lactancia/metabolismo , Embarazo , Ratas Sprague-Dawley , Regulación hacia Arriba
12.
Arch Biochem Biophys ; 640: 10-16, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29317227

RESUMEN

Overdose of oral calcium supplement and excessive intestinal calcium absorption can contribute pathophysiological conditions, e.g., nephrolithiasis, vascular calcification, dementia, and cardiovascular accident. Since our previous investigation has indicated that fibroblast growth factor (FGF)-23 could abolish the 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-enhanced calcium absorption, we further hypothesized that FGF-23 produced locally in the enterocytes might be part of a local negative feedback loop to regulate calcium absorption. Herein, 1,25(OH)2D3 was found to enhance the transcellular calcium transport across the epithelium-like Caco-2 monolayer, and this stimulatory effect was diminished by preceding prolonged exposure to high-dose 1,25(OH)2D3 or high concentration of apical ionized calcium. Pretreatment with a neutralizing antibody for FGF-23 prevented this negative feedback regulation of calcium hyperabsorption induced by 1,25(OH)2D3. FGF-23 exposure completely abolished the 1,25(OH)2D3-enhanced calcium transport. Western blot analysis revealed that FGF-23 expression was upregulated in a dose-dependent manner by 1,25(OH)2D3 or apical calcium exposure. Finally, calcium-sensing receptor (CaSR) inhibitors were found to prevent the apical calcium-induced suppression of calcium transport. In conclusion, prolonged exposure to high apical calcium and calcium hyperabsorption were sensed by CaSR, which, in turn, increased FGF-23 expression to suppress calcium transport. This local negative feedback loop can help prevent unnecessary calcium uptake and its detrimental consequences.


Asunto(s)
Calcitriol/metabolismo , Calcio/metabolismo , Factores de Crecimiento de Fibroblastos/biosíntesis , Mucosa Intestinal/metabolismo , Células CACO-2 , Factor-23 de Crecimiento de Fibroblastos , Humanos , Absorción Intestinal , Transporte Iónico , Receptores Sensibles al Calcio/metabolismo
13.
Biometals ; 31(5): 873-889, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30014351

RESUMEN

The association between iron overload and osteoporosis has been found in many diseases, such as hemochromatosis, ß-thalassemia and sickle cell anemia with multiple blood transfusion. One of the contributing factors is iron toxicity to osteoblasts. Some studies showed the negative effects of iron on osteoblasts; however, the effects of two biological available iron species, i.e., ferric and ferrous, on osteoblasts are elusive. Since most intracellular ionized iron is ferric, osteoblasts was hypothesized to be more responsive to ferric iron. Herein, ferric ammonium citrate (FAC) and ferrous ammonium sulfate (FAS) were used as ferric and ferrous donors. Our results showed that both iron species suppressed cell survival and proliferation. Both also induced osteoblast cell death consistent with the higher levels of cleaved caspase 3 and caspase 7 in osteoblasts, indicating that iron induced osteoblast apoptosis. Iron treatments led to the elevated intracellular iron in osteoblasts as determined by atomic absorption spectrophotometry, thereby leading to a decreased expression of genes for cellular iron import and increased expression of genes for cellular iron export. Effects of FAC and FAS on osteoblast differentiation were determined by the activity of alkaline phosphatase (ALP). The lower ALP activity from osteoblast with iron exposure was found. In addition, ferric and ferrous differentially induced osteoblastic and osteoblast-derived osteoclastogenic gene expression alterations in osteoblast. Even though both iron species had similar effects on osteoblast cell survival and differentiation, the overall effects were markedly stronger in FAC-treated groups, suggesting that osteoblasts were more sensitive to ferric than ferrous.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Compuestos Férricos/farmacología , Compuestos Ferrosos/farmacología , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ratas , Relación Estructura-Actividad
14.
J Sci Food Agric ; 98(5): 2027-2034, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28940514

RESUMEN

BACKGROUND: Breastfeeding leads to bone calcium loss for milk production, resulting in progressive maternal osteopenia. Calcium supplement from natural sources has been postulated to be more beneficial to bone health than purified CaCO3 because natural sources also contain other nutrients such as certain amino acids that might enhance calcium metabolism. Herein, we examined the effect of calcium supplementation from tuna bone powder and CaCO3 on bones of dams and the offspring. RESULTS: Both forms of calcium supplement, i.e. tuna bone powder and CaCO3 , increased maternal bone mineral density (BMD). However, bone histomorphometry revealed that only tuna bone had beneficial effect on maternal bone microstructure, i.e. increased bone formation, decreased bone resorption and increased in bone volume. Regarding the mechanical properties, the decreased ultimate load in non-supplement lactating mothers was restored to the load seen in nulliparous animals by calcium supplementation. Moreover, both tuna bone and CaCO3 supplementation in mothers led to increased milk calcium concentration and consequently increased BMD in the growing offspring. CONCLUSION: Calcium supplement from tuna bone powder was effective in preventing maternal osteopenia. Tuna bone, which is a readily available fishing industrial waste, is a good alternative source of calcium supplement that increases BMD in both lactating mothers and the neonates. © 2017 Society of Chemical Industry.


Asunto(s)
Densidad Ósea , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Enfermedades Óseas Metabólicas/metabolismo , Huesos/química , Calcio/metabolismo , Suplementos Dietéticos/análisis , Alimentos Fortificados/análisis , Animales , Enfermedades Óseas Metabólicas/fisiopatología , Huesos/metabolismo , Femenino , Humanos , Lactancia , Masculino , Ratas , Atún
15.
Am J Physiol Cell Physiol ; 313(1): C118-C129, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28490422

RESUMEN

Parathyroid hormone (PTH), a pleiotropic hormone that maintains mineral homeostasis, is also essential for controlling pH balance and ion transport across renal and intestinal epithelia. Optimization of luminal pH is important for absorption of trace elements, e.g., calcium and phosphorus. We have previously demonstrated that PTH rapidly stimulated electrogenic [Formula: see text] secretion in intestinal epithelial-like Caco-2 monolayers, but the underlying cellular mechanism, contributions of other ions, particularly Cl- and K+, and long-lasting responses are not completely understood. Herein, PTH and forskolin were confirmed to induce anion secretion, which peaked within 1-3 min (early phase), followed by an abrupt decay and plateau that lasted for 60 min (late phase). In both early and late phases, apical membrane capacitance was increased with a decrease in basolateral capacitance after PTH or forskolin exposure. PTH also induced a transient increase in apical conductance with a long-lasting decrease in basolateral conductance. Anion secretion in both phases was reduced under [Formula: see text]-free and/or Cl--free conditions or after exposure to carbonic anhydrase inhibitor (acetazolamide), CFTR inhibitor (CFTRinh-172), Na+/H+ exchanger (NHE)-3 inhibitor (tenapanor), or K+ channel inhibitors (BaCl2, clotrimazole, and TRAM-34; basolateral side), the latter of which suggested that PTH action was dependent on basolateral K+ recycling. Furthermore, early- and late-phase responses to PTH were diminished by inhibitors of PI3K (wortmannin and LY-294002) and PKA (PKI 14-22). In conclusion, PTH requires NHE3 and basolateral K+ channels to induce [Formula: see text] and Cl- secretion, thus explaining how PTH regulated luminal pH balance and pH-dependent absorption of trace minerals.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Hormona Paratiroidea/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Acetazolamida/farmacología , Potenciales de Acción/efectos de los fármacos , Androstadienos/farmacología , Compuestos de Bario/farmacología , Bicarbonatos/metabolismo , Células CACO-2 , Calcio/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Cloruros/metabolismo , Cloruros/farmacología , Cromonas/farmacología , Clotrimazol/farmacología , Colforsina/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Conductividad Eléctrica , Humanos , Concentración de Iones de Hidrógeno , Transporte Iónico/efectos de los fármacos , Isoquinolinas/farmacología , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fósforo/metabolismo , Potasio/metabolismo , Canales de Potasio Calcio-Activados/antagonistas & inhibidores , Canales de Potasio Calcio-Activados/genética , Pirazoles/farmacología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/genética , Sulfonamidas/farmacología , Wortmanina
16.
Amino Acids ; 49(4): 725-734, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27981415

RESUMEN

Na+/H+ exchanger (NHE)-3 is important for intestinal absorption of nutrients and minerals, including calcium. The previous investigations have shown that the intestinal calcium absorption is also dependent on luminal nutrients, but whether aliphatic amino acids and glucose, which are abundant in the luminal fluid during a meal, similarly enhance calcium transport remains elusive. Herein, we used the in vitro Ussing chamber technique to determine epithelial electrical parameters, i.e., potential difference (PD), short-circuit current (Isc), and transepithelial resistance, as well as 45Ca flux in the rat duodenum directly exposed on the mucosal side to glucose or various amino acids. We found that mucosal glucose exposure led to the enhanced calcium transport, PD, and Isc, all of which were insensitive to NHE3 inhibitor (100 nM tenapanor). In the absence of mucosal glucose, several amino acids (12 mM in the mucosal side), i.e., alanine, isoleucine, leucine, proline, and hydroxyproline, markedly increased the duodenal calcium transport. An inhibitor for NHE3 exposure on the mucosal side completely abolished proline- and leucine-enhanced calcium transport, but not transepithelial transport of both amino acids themselves. In conclusion, glucose and certain amino acids in the mucosal side were potent stimulators of the duodenal calcium absorption, but only amino-acid-enhanced calcium transport was NHE3-dependent.


Asunto(s)
Aminoácidos/metabolismo , Calcio/metabolismo , Duodeno/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/antagonistas & inhibidores , Animales , Duodeno/efectos de los fármacos , Epitelio/metabolismo , Femenino , Glucosa/metabolismo , Transporte Iónico , Isoquinolinas/farmacología , Ratas , Ratas Sprague-Dawley , Sulfonamidas/farmacología
17.
Mol Cell Biochem ; 427(1-2): 201-208, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27995414

RESUMEN

Recent investigation has shown that the liver-derived iron-regulating hormone, hepcidin, can potentiate intestinal calcium absorption in hemizygous ß-globin knockout thalassemic (BKO) mice. Since the upregulation of Fe2+ and H+ cotransporter, divalent metal transporter (DMT)-1, has been shown to correlate with thalassemia-induced intestinal calcium absorption impairment, the inhibition of the apical Na+/H+ exchanger (NHE)-3 that is essential for cytoplasmic pH regulation and transepithelial sodium absorption was hypothesized to negatively affect hepcidin action. Herein, the positive effect of hepcidin on the duodenal calcium transport was evaluated using Ussing chamber technique. The results showed that BKO mice had lower absorptive surface area and duodenal calcium transport than wild-type mice. Besides, paracellular transport of zinc in BKO mice was compromised. Hepcidin administration completely restored calcium transport. Since this hepcidin action was totally abolished by inhibitors of the basolateral calcium transporters, Na+/Ca2+ exchanger (NCX1) and plasma membrane Ca2+-ATPase (PMCA1b), the enhanced calcium flux potentially occurred through the transcellular pathway rather than paracellular pathway. Interestingly, the selective NHE3 inhibitor, 100 nM tenapanor, markedly inhibited hepcidin-enhanced calcium transport. Accordingly, hepcidin is one of the promising therapeutic agents for calcium malabsorption in ß-thalassemia. It mainly stimulates the transcellular calcium transport across the duodenal epithelium in an NHE3-dependent manner.


Asunto(s)
Calcio/metabolismo , Duodeno/metabolismo , Hepcidinas/farmacología , Isoquinolinas/farmacología , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Sulfonamidas/farmacología , Talasemia/metabolismo , Globinas beta/metabolismo , Animales , Duodeno/patología , Femenino , Transporte Iónico/efectos de los fármacos , Transporte Iónico/genética , Ratones , Ratones Noqueados , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Intercambiador de Sodio-Calcio/genética , Intercambiador de Sodio-Calcio/metabolismo , Intercambiador 3 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Talasemia/genética , Talasemia/patología , Globinas beta/genética
18.
J Bone Miner Metab ; 35(2): 142-149, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27026433

RESUMEN

Fibroblast growth factor (FGF)-21 is a potent endocrine factor that improves insulin resistance and obesity-associated metabolic disorders. However, concomitant activation of peroxisome proliferator-activated receptor-γ by FGF-21 makes bone susceptible to osteopenia and fragility fracture. Since an increase in body weight often induced adaptive change in bone by making it resistant to fracture, it was unclear whether FGF-21 would still induce bone defects in overweight rats. Therefore, the present study aimed to investigate bone microstructure and its mechanical properties in high fat diet (HF)-fed rats treated with 0.1 mg/kg/day FGF-21. Eighteen male rats were divided into two groups to receive either a normal diet or HF for 12 weeks. HF rats were then divided into two subgroups to receive either vehicle or FGF-21 for 4 weeks. The results showed that HF led to obesity, dyslipidemia and insulin resistance, as indicated by hyperinsulinemia with euglycemia. In HF rats, there was an increase in tibial yield displacement (an indicator of ability to be deformed without losing toughness, as determined by 3-point bending) without changes in tibial trabecular volumetric bone mineral density (vBMD) or cortical bone parameters, e.g., cortical thickness and bone area. FGF-21 treatment strongly improved the metabolic parameters and increased insulin sensitivity in HF rats. However, FGF-21-treated HF rats showed lower yield displacement, trabecular vBMD, trabecular bone volume, trabecular thickness, and osteoblast surface compared with vehicle-treated HF rats. These findings suggest that, despite being a potent antagonist of insulin resistance and visceral fat accumulation, FGF-21 is associated with bone defects in HF rats.


Asunto(s)
Hueso Esponjoso/patología , Factores de Crecimiento de Fibroblastos/farmacología , Resistencia a la Insulina , Obesidad/fisiopatología , Animales , Densidad Ósea , Dieta Alta en Grasa , Dislipidemias/fisiopatología , Masculino , Distribución Aleatoria , Ratas , Ratas Wistar , Tibia/patología , Microtomografía por Rayos X
19.
Am J Physiol Endocrinol Metab ; 311(1): E214-23, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27245334

RESUMEN

Previously, ß-thalassemia, an inherited anemic disorder with iron overload caused by loss-of-function mutation of ß-globin gene, has been reported to induce osteopenia and impaired whole body calcium metabolism, but the pathogenesis of aberrant calcium homeostasis remains elusive. Herein, we investigated how ß-thalassemia impaired intestinal calcium absorption and whether it could be restored by administration of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] or hepcidin, the latter of which was the liver-derived antagonist of intestinal iron absorption. The results showed that, in hemizygous ß-globin knockout (BKO) mice, the duodenal calcium transport was lower than that in wild-type littermates, and severity was especially pronounced in female mice. Both active and passive duodenal calcium fluxes in BKO mice were found to be less than those in normal mice. This impaired calcium transport could be restored by 7-day 1,25(OH)2D3 treatment. The 1,25(OH)2D3-induced calcium transport was diminished by inhibitors of calcium transporters, e.g., L-type calcium channel, NCX1, and PMCA1b, as well as vesicular transport inhibitors. Interestingly, the duodenal calcium transport exhibited an inverse correlation with transepithelial iron transport, which was markedly enhanced in thalassemic mice. Thus, 3-day subcutaneous hepcidin injection and acute direct hepcidin exposure in the Ussing chamber were capable of restoring the thalassemia-associated impairment of calcium transport; however, the positive effect of hepcidin on calcium transport was completely blocked by proteasome inhibitors MG132 and bortezomib. In conclusion, both 1,25(OH)2D3 and hepcidin could be used to alleviate the ß-thalassemia-associated impairment of calcium absorption. Therefore, our study has shed light on the development of a treatment strategy to rescue calcium dysregulation in ß-thalassemia.


Asunto(s)
Calcitriol/farmacología , Calcio/metabolismo , Duodeno/efectos de los fármacos , Hepcidinas/farmacología , Absorción Intestinal/efectos de los fármacos , Hierro/metabolismo , Talasemia beta/metabolismo , Animales , Bortezomib/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Duodeno/metabolismo , Femenino , Hemicigoto , Leupeptinas/farmacología , Masculino , Ratones , Ratones Noqueados , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Proteínas de Transporte Vesicular/antagonistas & inhibidores , Globinas beta/genética , Talasemia beta/genética
20.
Arch Biochem Biophys ; 590: 109-117, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26657069

RESUMEN

As the principal lactogenic hormone, prolactin (PRL) not only induces lactogenesis but also enhances intestinal calcium absorption to supply calcium for milk production. How the intestinal epithelium res-ponses to PRL is poorly understood, but it is hypothesized to increase mucosal absorptive surface area and calcium transporter expression. Herein, lactating rats were found to have greater duodenal, jejunal and ileal villous heights as well as cecal crypt depths than age-matched nulliparous rats. Morphometric analyses in the duodenum and cecum showed that their mucosal adaptations were diminished by bromocriptine, an inhibitor of pituitary PRL release. PRL also upregulated calcium transporter expression (e.g., TRPV6 and PMCA1b) in the duodenum of lactating rats. Since excessive calcium absorption could be detrimental to lactating rats, local negative regulator of calcium absorption, e.g., fibroblast growth factor (FGF)-23, should be increased. Immunohistochemistry confirmed the upregulation of FGF-23 protein expression in the duodenal and cecal mucosae of lactating rats, consistent with the enhanced FGF-23 mRNA expression in Caco-2 cells. Bromocriptine abolished this lactation-induced FGF-23 expression. Additionally, FGF-23 could negate PRL-stimulated calcium transport across Caco-2 monolayer. In conclusion, PRL was responsible for the lactation-induced mucosal adaptations, which were associated with compensatory increase in FGF-23 expression probably to prevent calcium hyperabsorption.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Mucosa Intestinal/metabolismo , Lactancia/psicología , Prolactina/metabolismo , Animales , Ciego/metabolismo , Duodeno/metabolismo , Femenino , Regulación de la Expresión Génica/fisiología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA