Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 261(Pt 2): 129638, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266841

RESUMEN

Microneedles are a promising micro-scale drug delivery platform that has been under development for over two decades. While 3D printing technology has been applied to fabricate these systems, the challenge of achieving needle sharpness remains. In this study, we present an innovative approach for microneedle fabrication using digital light processing (DLP) 3D printing and smart chitosan biomaterial. For the first time, we used hydroxybutyl methacrylated chitosan (HBCMA), which possesses dual temperature- and photo-sensitive properties, to create microneedles. The DLP approach enabled a quick generation of HBCMA-based microneedles with a high resolution. The microneedles exhibited 4D properties with a change in needle dimensions upon exposure to temperature, which enhances resolution, sharpens needles, and improves mechanical strength. We demonstrated the ability of these microneedles to load, deliver, sustained release small molecular drugs and penetrate soft tissue. Overall, the HBCMA-based microneedles show promising potential in non-dermal drug delivery applications.


Asunto(s)
Quitosano , Administración Cutánea , Microinyecciones/métodos , Sistemas de Liberación de Medicamentos/métodos , Preparaciones de Acción Retardada
2.
Foods ; 12(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36766165

RESUMEN

The colorimetric sensor array (CSA) is a simple, rapid, and cost-effective system widely used in food science to assess food quality by identifying undesirable volatile organic compounds. As a prospective alternative to conventional techniques such as total volatile basic nitrogen, peroxide value, and thiobarbituric acid reactive substance analysis, the CSA system has garnered significant attention. This study evaluated the quality of edible-coated food products using both conventional and CSA methods in order to demonstrate that the CSA approach is a feasible alternative to conventional methods. Boiled-dried anchovies (BDA) were selected as the model food product, and the sample's quality was assessed as a function of storage temperature and incubation period using conventional techniques and the CSA system. The surface of BDA was coated with an edible alginate film to form the surface-modified food product. The conventional methods revealed that an increase in storage temperature and incubation time accelerated the lipid oxidation process, with the uncoated BDA undergoing lipid oxidation at a faster rate than the coated BDA. Utilizing multivariate statistical analysis, the CSA approach essentially yielded the same results. In addition, the partial least square regression technique revealed a strong correlation between the CSA system and conventional methods, indicating that the CSA system may be a feasible alternative to existing methods for evaluating the quality of food products with surface modifications.

3.
Polymers (Basel) ; 15(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38231978

RESUMEN

The fisheries industry encounters distinct packaging challenges, including the need to protect perishable seafood from rapid spoilage caused by UV radiation while allowing for reuse. This study tackles these issues by introducing advanced high-density polyethylene (HDPE) composites enhanced with a UV stabilizer and inorganic fillers, such as diatomaceous earth/zinc oxide (DZ). Our investigation explores the transformative effects of weathering on these pioneering composites, evaluating shifts in mechanical, physical, thermal properties, and sub-zero temperature stability. Incorporating a UV stabilizer alongside DZ within the HDPE matrix significantly enhances mechanical performance and weathering resilience. These enhancements extend the longevity of seafood packaging while preserving product quality. Moreover, our findings reveal a substantial breakthrough in antimicrobial properties. The inclusion of DZ, with or without a UV stabilizer, results in an impressive up to 99% enhancement in antibacterial activity against both Gram-positive and Gram-negative bacteria. This discovery not only bolsters the protective attributes of HDPE packaging but also presents a compelling case for the development of active packaging materials derived from DE/ZnO composites. This study bridges the gap between packaging and seafood quality, introducing advanced polymeric packaging technology for seafood products. It highlights the mutually beneficial link between packaging improvements and ensuring seafood quality, meeting industry needs while promoting sustainability.

4.
Polymers (Basel) ; 14(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36501622

RESUMEN

One of the key factors of supporting the rapidly expanding seafood product industry in terms of quality control is the utilization of active packaging materials. Microorganisms are primarily responsible for the perishability and rapid disintegration of seafood. The incorporation of an inorganic compound, such as silica-based diatomaceous earth (DE), and a metal oxide, such as zinc oxide (ZnO), is proposed to develop active packaging materials with excellent antibacterial activity, minimized fishy odor, and brittleness at subzero temperatures. The mechanical, morphological, and physicochemical properties of these materials were investigated. The results show that the addition of DE/ZnO improved the antibacterial activity of high-density polyethylene (HDPE) samples by up to approximately 95% against both gram-positive and -negative bacteria. Additionally, it enhanced the Izod strength and stability at subzero temperatures of the samples. The odor evaporation test revealed that trimethylamine can be minimized in proportion to increasing DE/ZnO composite concentration. As a result, the development of active packaging materials from DE/ZnO composites is an emerging polymeric packaging technology for seafood products, wherein packaging and seafood quality are linked.

5.
Carbohydr Polym ; 298: 120066, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36241265

RESUMEN

Hybrid-crosslinked systems, which can be formed using heat and visible light, are significant for improving the stability of hydrogels under physiological conditions. However, several challenges for their practical application remain, such as shrinking under culture medium conditions or the neutral pH in the small intestine. Therefore, a multi-sensitive hydrogel with response to external conditions has been designed and prepared, which could be employed as a biopolymer ink formulation for three-dimensional printing in bioengineering applications. When exposed to body temperature and visible light, the N-succinyl hydroxybutyl methacrylated chitosan (NS-HBC-MA) undergoes a sol-gel phase transition. The NS-HBC-MA hydrogel exhibits pH-responsive swelling, effectively preventing shrinkage at a neutral pH. Furthermore, NS-HBC-MA hydrogel demonstrates excellent biocompatibility and biodegradability. This study demonstrates that the NS-HBC-MA hydrogel has significant potential for various applications, including wound healing, delivery systems, and tissue engineering.


Asunto(s)
Quitosano , Biopolímeros , Hidrogeles , Concentración de Iones de Hidrógeno , Temperatura , Ingeniería de Tejidos
6.
Polymers (Basel) ; 13(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525720

RESUMEN

Improving the antibacterial activity of biodegradable materials is crucial for combatting widespread drug-resistant bacteria and plastic pollutants. In this work, we studied polyaniline (PANI)-functionalized zinc oxide nanoparticles (ZnO NPs) to improve surface charges. A PANI-functionalized ZnO NP surface was prepared using a simple impregnation technique. The PANI functionalization of ZnO successfully increased the positive surface charge of the ZnO NPs. In addition, PANI-functionalized ZnO improved mechanical properties and thermal stability. Besides those properties, the water permeability of the bionanocomposite films was decreased due to their increased hydrophobicity. PANI-functionalized ZnO NPs were applied to thermoplastic starch (TPS) films for physical properties and antibacterial studies using Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The PANI-functionalized ZnO bionanocomposite films exhibited excellent antibacterial activity for both E. coli (76%) and S. aureus (72%). This result suggests that PANI-functionalized ZnO NPs can improve the antibacterial activity of TPS-based bionanocomposite films.

7.
Bioresour Technol ; 331: 125060, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33798863

RESUMEN

Fly ash (FA), obtained as waste materials from industrial power plants, is generated in large quantities and low recycling. In this study, re-generation of waste FA as cost-effective materials with adsorbent and antibacterial applications was assessed. Alkaline/zinc-activated fly ash nanocomposite (A-FA/Zn) was prepared using one-pot hydrothermal technique. Those nanocomposites are characterized by high surface area and negatively surface charge, which are important influences contributing to an enhancement in adsorption capacity via increase in the number of adsorptive sites and electrostatic interaction between dye molecules-nanocomposites. Additionally, the presence of Zn ions in the prepared nanocomposites represents a key advantage with respect to enhancing antibacterial activity. The feasibility of further enhancing adsorption and antibacterial mechanisms was also examined. It is anticipated that the findings of this study will provide useful information with respect to the development of simple, eco-friendly and low-cost A-FA/Zn with multifunctional applications as organic dye removal and antibacterial purposes.


Asunto(s)
Nanocompuestos , Contaminantes Químicos del Agua , Adsorción , Álcalis , Antibacterianos/farmacología , Ceniza del Carbón , Contaminantes Químicos del Agua/análisis , Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA