Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Physiol ; 239(5): e31254, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501553

RESUMEN

Desmin, the most abundant intermediate filament in cardiomyocytes, plays a key role in maintaining cardiomyocyte structure by interconnecting intracellular organelles, and facilitating cardiomyocyte interactions with the extracellular matrix and neighboring cardiomyocytes. As a consequence, mutations in the desmin gene (DES) can lead to desminopathies, a group of diseases characterized by variable and often severe cardiomyopathies along with skeletal muscle disorders. The basic desmin intermediate filament structure is composed of four segments separated by linkers that further assemble into dimers, tetramers and eventually unit-length filaments that compact radially to give the final form of the filament. Each step in this process is critical for proper filament formation and allow specific interactions within the cell. Mutations within the desmin gene can disrupt filament formation, as seen by aggregate formation, and thus have severe cardiac and skeletal outcomes, depending on the locus of the mutation. The focus of this review is to outline the cardiac molecular consequences of mutations located in the C-terminal part of segment 2B. This region is crucial for ensuring proper desmin filament formation and is a known hotspot for mutations that significantly impact cardiac function.


Asunto(s)
Cardiomiopatías , Desmina , Mutación , Desmina/genética , Desmina/metabolismo , Humanos , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Mutación/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Filamentos Intermedios/genética , Filamentos Intermedios/metabolismo , Animales
3.
Circulation ; 142(2): 161-174, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32264695

RESUMEN

BACKGROUND: The cyclic AMP (adenosine monophosphate; cAMP)-hydrolyzing protein PDE4B (phosphodiesterase 4B) is a key negative regulator of cardiac ß-adrenergic receptor stimulation. PDE4B deficiency leads to abnormal Ca2+ handling and PDE4B is decreased in pressure overload hypertrophy, suggesting that increasing PDE4B in the heart is beneficial in heart failure. METHODS: We measured PDE4B expression in human cardiac tissues and developed 2 transgenic mouse lines with cardiomyocyte-specific overexpression of PDE4B and an adeno-associated virus serotype 9 encoding PDE4B. Myocardial structure and function were evaluated by echocardiography, ECG, and in Langendorff-perfused hearts. Also, cAMP and PKA (cAMP dependent protein kinase) activity were monitored by Förster resonance energy transfer, L-type Ca2+ current by whole-cell patch-clamp, and cardiomyocyte shortening and Ca2+ transients with an Ionoptix system. Heart failure was induced by 2 weeks infusion of isoproterenol or transverse aortic constriction. Cardiac remodeling was evaluated by serial echocardiography, morphometric analysis, and histology. RESULTS: PDE4B protein was decreased in human failing hearts. The first PDE4B-transgenic mouse line (TG15) had a ≈15-fold increase in cardiac cAMP-PDE activity and a ≈30% decrease in cAMP content and fractional shortening associated with a mild cardiac hypertrophy that resorbed with age. Basal ex vivo myocardial function was unchanged, but ß-adrenergic receptor stimulation of cardiac inotropy, cAMP, PKA, L-type Ca2+ current, Ca2+ transients, and cell contraction were blunted. Endurance capacity and life expectancy were normal. Moreover, these mice were protected from systolic dysfunction, hypertrophy, lung congestion, and fibrosis induced by chronic isoproterenol treatment. In the second PDE4B-transgenic mouse line (TG50), markedly higher PDE4B overexpression, resulting in a ≈50-fold increase in cardiac cAMP-PDE activity caused a ≈50% decrease in fractional shortening, hypertrophy, dilatation, and premature death. In contrast, mice injected with adeno-associated virus serotype 9 encoding PDE4B (1012 viral particles/mouse) had a ≈50% increase in cardiac cAMP-PDE activity, which did not modify basal cardiac function but efficiently prevented systolic dysfunction, apoptosis, and fibrosis, while attenuating hypertrophy induced by chronic isoproterenol infusion. Similarly, adeno-associated virus serotype 9 encoding PDE4B slowed contractile deterioration, attenuated hypertrophy and lung congestion, and prevented apoptosis and fibrotic remodeling in transverse aortic constriction. CONCLUSIONS: Our results indicate that a moderate increase in PDE4B is cardioprotective and suggest that cardiac gene therapy with PDE4B might constitute a new promising approach to treat heart failure.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Expresión Génica , Insuficiencia Cardíaca/etiología , Miocardio/metabolismo , Remodelación Ventricular/genética , Agonistas Adrenérgicos beta/farmacología , Animales , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Terapia Genética , Vectores Genéticos/genética , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Pruebas de Función Cardíaca , Humanos , Isoproterenol/farmacología , Ratones , Ratones Transgénicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fenotipo , Receptores Adrenérgicos beta/metabolismo , Transducción Genética , Remodelación Ventricular/efectos de los fármacos
4.
Europace ; 23(7): 1124-1133, 2021 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-34009333

RESUMEN

AIMS: Coronavirus disease of 2019 (COVID-19) has rapidly become a worldwide pandemic. Many clinical trials have been initiated to fight the disease. Among those, hydroxychloroquine and azithromycin had initially been suggested to improve clinical outcomes. Despite any demonstrated beneficial effects, they are still in use in some countries but have been reported to prolong the QT interval and induce life-threatening arrhythmia. Since a significant proportion of the world population may be treated with such COVID-19 therapies, evaluation of the arrhythmogenic risk of any candidate drug is needed. METHODS AND RESULTS: Using the O'Hara-Rudy computer model of human ventricular wedge, we evaluate the arrhythmogenic potential of clinical factors that can further alter repolarization in COVID-19 patients in addition to hydroxychloroquine (HCQ) and azithromycin (AZM) such as tachycardia, hypokalaemia, and subclinical to mild long QT syndrome. Hydroxychloroquine and AZM drugs have little impact on QT duration and do not induce any substrate prone to arrhythmia in COVID-19 patients with normal cardiac repolarization reserve. Nevertheless, in every tested condition in which this reserve is reduced, the model predicts larger electrocardiogram impairments, as with dofetilide. In subclinical conditions, the model suggests that mexiletine limits the deleterious effects of AZM and HCQ. CONCLUSION: By studying the HCQ and AZM co-administration case, we show that the easy-to-use O'Hara-Rudy model can be applied to assess the QT-prolongation potential of off-label drugs, beyond HCQ and AZM, in different conditions representative of COVID-19 patients and to evaluate the potential impact of additional drug used to limit the arrhythmogenic risk.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Síndrome de QT Prolongado , Azitromicina/efectos adversos , Muerte Súbita Cardíaca/etiología , Muerte Súbita Cardíaca/prevención & control , Humanos , Hidroxicloroquina/efectos adversos , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/diagnóstico , SARS-CoV-2
5.
Europace ; 23(3): 441-450, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33200177

RESUMEN

AIMS: In 2003, an Australian woman was convicted by a jury of smothering and killing her four children over a 10-year period. Each child died suddenly and unexpectedly during a sleep period, at ages ranging from 19 days to 18 months. In 2019 we were asked to investigate if a genetic cause could explain the children's deaths as part of an inquiry into the mother's convictions. METHODS AND RESULTS: Whole genomes or exomes of the mother and her four children were sequenced. Functional analysis of a novel CALM2 variant was performed by measuring Ca2+-binding affinity, interaction with calcium channels and channel function. We found two children had a novel calmodulin variant (CALM2 G114R) that was inherited maternally. Three genes (CALM1-3) encode identical calmodulin proteins. A variant in the corresponding residue of CALM3 (G114W) was recently reported in a child who died suddenly at age 4 and a sibling who suffered a cardiac arrest at age 5. We show that CALM2 G114R impairs calmodulin's ability to bind calcium and regulate two pivotal calcium channels (CaV1.2 and RyR2) involved in cardiac excitation contraction coupling. The deleterious effects of G114R are similar to those produced by G114W and N98S, which are considered arrhythmogenic and cause sudden cardiac death in children. CONCLUSION: A novel functional calmodulin variant (G114R) predicted to cause idiopathic ventricular fibrillation, catecholaminergic polymorphic ventricular tachycardia, or mild long QT syndrome was present in two children. A fatal arrhythmic event may have been triggered by their intercurrent infections. Thus, calmodulinopathy emerges as a reasonable explanation for a natural cause of their deaths.


Asunto(s)
Infanticidio , Taquicardia Ventricular , Arritmias Cardíacas , Australia , Niño , Preescolar , Muerte Súbita Cardíaca/etiología , Femenino , Humanos , Lactante , Canal Liberador de Calcio Receptor de Rianodina , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/genética
6.
Eur Heart J ; 41(30): 2878-2890, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32533187

RESUMEN

AIMS: Brugada syndrome (BrS) is characterized by a unique electrocardiogram (ECG) pattern and life-threatening arrhythmias. However, the Type 1 Brugada ECG pattern is often transient, and a genetic cause is only identified in <25% of patients. We sought to identify an additional biomarker for this rare condition. As myocardial inflammation may be present in BrS, we evaluated whether myocardial autoantibodies can be detected in these patients. METHODS AND RESULTS: For antibody (Ab) discovery, normal human ventricular myocardial proteins were solubilized and separated by isoelectric focusing (IEF) and molecular weight on two-dimensional (2D) gels and used to discover Abs by plating with sera from patients with BrS and control subjects. Target proteins were identified by mass spectrometry (MS). Brugada syndrome subjects were defined based on a consensus clinical scoring system. We assessed discovery and validation cohorts by 2D gels, western blots, and ELISA. We performed immunohistochemistry on myocardium from BrS subjects (vs. control). All (3/3) 2D gels exposed to sera from BrS patients demonstrated specific Abs to four proteins, confirmed by MS to be α-cardiac actin, α-skeletal actin, keratin, and connexin-43, vs. 0/8 control subjects. All (18/18) BrS subjects from our validation cohorts demonstrated the same Abs, confirmed by western blots, vs. 0/24 additional controls. ELISA optical densities for all Abs were elevated in all BrS subjects compared to controls. In myocardium obtained from BrS subjects, each protein, as well as SCN5A, demonstrated abnormal protein expression in aggregates. CONCLUSION: A biomarker profile of autoantibodies against four cardiac proteins, namely α-cardiac actin, α-skeletal actin, keratin, and connexin-43, can be identified from sera of BrS patients and is highly sensitive and specific, irrespective of genetic cause for BrS. The four involved proteins, along with the SCN5A-encoded Nav1.5 alpha subunit are expressed abnormally in the myocardium of patients with BrS.


Asunto(s)
Síndrome de Brugada , Arritmias Cardíacas , Autoanticuerpos , Síndrome de Brugada/diagnóstico , Electrocardiografía , Ventrículos Cardíacos , Humanos
8.
Pharmacol Res ; 159: 104922, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32464326

RESUMEN

Down-regulation of Connexin43 (Cx43) has often been associated with the development of cardiac fibrosis. We showed previously that Scn5a heterozygous knockout mice (Scn5a+/-), which mimic familial progressive cardiac conduction defect, exhibit an age-dependent decrease of Cx43 expression and phosphorylation concomitantly with activation of TGF-ß pathway and fibrosis development in the myocardium between 45 and 60 weeks of age. The aim of this study was to investigate whether Gap-134 prevents Cx43 down-regulation with age and fibrosis development in Scn5a+/- mice. We observed in 60-week-old Scn5a+/- mouse heart a Cx43 expression and localization remodeling correlated with fibrosis. Chronic administration of a potent and selective gap junction modifier, Gap-134 (danegaptide), between 45 and 60 weeks, increased Cx43 expression and phosphorylation on serine 368 and prevented Cx43 delocalization. Furthermore, we found that Gap-134 prevented fibrosis despite the persistence of the conduction defects and the TGF-ß canonical pathway activation. In conclusion, the present study demonstrates that the age-dependent decrease of Cx43 expression is involved in the ventricular fibrotic process occurring in Scn5a+/- mice. Finally, our study suggests that gap junction modifier, such as Gap-134, could be an effective anti-fibrotic agent in the context of age-dependent fibrosis in progressive cardiac conduction disease.


Asunto(s)
Benzamidas/farmacología , Cardiomiopatías/prevención & control , Conexina 43/metabolismo , Fibroblastos/efectos de los fármacos , Miocardio/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/deficiencia , Prolina/análogos & derivados , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Ratones de la Cepa 129 , Ratones Noqueados , Miocardio/patología , Canal de Sodio Activado por Voltaje NAV1.5/genética , Fosforilación , Prolina/farmacología , Pirazoles/farmacología , Transducción de Señal , Regulación hacia Arriba , Remodelación Ventricular/efectos de los fármacos
9.
Eur Heart J ; 40(37): 3081-3094, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31114854

RESUMEN

AIMS: The Brugada syndrome (BrS) is an inherited cardiac disorder predisposing to ventricular arrhythmias. Despite considerable efforts, its genetic basis and cellular mechanisms remain largely unknown. The objective of this study was to identify a new susceptibility gene for BrS through familial investigation. METHODS AND RESULTS: Whole-exome sequencing performed in a three-generation pedigree with five affected members allowed the identification of one rare non-synonymous substitution (p.R211H) in RRAD, the gene encoding the RAD GTPase, carried by all affected members of the family. Three additional rare missense variants were found in 3/186 unrelated index cases. We detected higher levels of RRAD transcripts in subepicardium than in subendocardium in human heart, and in the right ventricle outflow tract compared to the other cardiac compartments in mice. The p.R211H variant was then subjected to electrophysiological and structural investigations in human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs). Cardiomyocytes derived from induced pluripotent stem cells from two affected family members exhibited reduced action potential upstroke velocity, prolonged action potentials and increased incidence of early afterdepolarizations, with decreased Na+ peak current amplitude and increased Na+ persistent current amplitude, as well as abnormal distribution of actin and less focal adhesions, compared with intra-familial control iPSC-CMs Insertion of p.R211H-RRAD variant in control iPSCs by genome editing confirmed these results. In addition, iPSC-CMs from affected patients exhibited a decreased L-type Ca2+ current amplitude. CONCLUSION: This study identified a potential new BrS-susceptibility gene, RRAD. Cardiomyocytes derived from induced pluripotent stem cells expressing RRAD variant recapitulated single-cell electrophysiological features of BrS, including altered Na+ current, as well as cytoskeleton disturbances.


Asunto(s)
Síndrome de Brugada/genética , Mutación Missense , Miocitos Cardíacos/patología , Proteínas ras/genética , Potenciales de Acción/genética , Adulto , Síndrome de Brugada/patología , Síndrome de Brugada/fisiopatología , Citoesqueleto/genética , Citoesqueleto/patología , Femenino , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Masculino , Miocitos Cardíacos/fisiología
10.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998413

RESUMEN

IKr current, a major component of cardiac repolarization, is mediated by human Ether-à-go-go-Related Gene (hERG, Kv11.1) potassium channels. The blockage of these channels by pharmacological compounds is associated to drug-induced long QT syndrome (LQTS), which is a life-threatening disorder characterized by ventricular arrhythmias and defects in cardiac repolarization that can be illustrated using cardiomyocytes derived from human-induced pluripotent stem cells (hiPS-CMs). This study was meant to assess the modification in hiPS-CMs excitability and contractile properties by BeKm-1, a natural scorpion venom peptide that selectively interacts with the extracellular face of hERG, by opposition to reference compounds that act onto the intracellular face. Using an automated patch-clamp system, we compared the affinity of BeKm-1 for hERG channels with some reference compounds. We fully assessed its effects on the electrophysiological, calcium handling, and beating properties of hiPS-CMs. By delaying cardiomyocyte repolarization, the peptide induces early afterdepolarizations and reduces spontaneous action potentials, calcium transients, and contraction frequencies, therefore recapitulating several of the critical phenotype features associated with arrhythmic risk in drug-induced LQTS. BeKm-1 exemplifies an interesting reference compound in the integrated hiPS-CMs cell model for all drugs that may block the hERG channel from the outer face. Being a peptide that is easily modifiable, it will serve as an ideal molecular platform for the design of new hERG modulators displaying additional functionalities.


Asunto(s)
Calcio/metabolismo , Canal de Potasio ERG1/antagonistas & inhibidores , Miocitos Cardíacos/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Potasio/metabolismo , Venenos de Escorpión/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Antiarrítmicos/farmacología , Canales de Calcio/metabolismo , Diferenciación Celular , Canal de Potasio ERG1/metabolismo , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Transporte Iónico , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/fisiopatología , Modelos Biológicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Fenetilaminas/farmacología , Piperidinas/farmacología , Piridinas/farmacología , Sulfonamidas/farmacología
11.
Proc Natl Acad Sci U S A ; 113(7): E932-41, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26831068

RESUMEN

Dysfunction of pacemaker activity in the sinoatrial node (SAN) underlies "sick sinus" syndrome (SSS), a common clinical condition characterized by abnormally low heart rate (bradycardia). If untreated, SSS carries potentially life-threatening symptoms, such as syncope and end-stage organ hypoperfusion. The only currently available therapy for SSS consists of electronic pacemaker implantation. Mice lacking L-type Cav1.3 Ca(2+) channels (Cav1.3(-/-)) recapitulate several symptoms of SSS in humans, including bradycardia and atrioventricular (AV) dysfunction (heart block). Here, we tested whether genetic ablation or pharmacological inhibition of the muscarinic-gated K(+) channel (IKACh) could rescue SSS and heart block in Cav1.3(-/-) mice. We found that genetic inactivation of IKACh abolished SSS symptoms in Cav1.3(-/-) mice without reducing the relative degree of heart rate regulation. Rescuing of SAN and AV dysfunction could be obtained also by pharmacological inhibition of IKACh either in Cav1.3(-/-) mice or following selective inhibition of Cav1.3-mediated L-type Ca(2+) (ICa,L) current in vivo. Ablation of IKACh prevented dysfunction of SAN pacemaker activity by allowing net inward current to flow during the diastolic depolarization phase under cholinergic activation. Our data suggest that patients affected by SSS and heart block may benefit from IKACh suppression achieved by gene therapy or selective pharmacological inhibition.


Asunto(s)
Canales de Calcio Tipo L/efectos de los fármacos , Proteínas de Unión al GTP/fisiología , Bloqueo Cardíaco/tratamiento farmacológico , Activación del Canal Iónico/fisiología , Síndrome del Seno Enfermo/tratamiento farmacológico , Animales , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/fisiología , Humanos , Ratones , Ratones Noqueados
12.
J Mol Cell Cardiol ; 123: 13-25, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30144447

RESUMEN

AIM: Deletion of QKP1507-1509 amino-acids in SCN5A gene product, the voltage-gated Na+ channel Nav1.5, has been associated with a large phenotypic spectrum of type 3 long QT syndrome, conduction disorder, dilated cardiomyopathy and high incidence of sudden death. The aim of this study was to develop and characterize a novel model of type 3 long QT syndrome to study the consequences of the QKP1507-1509 deletion. METHODS AND RESULTS: We generated a knock-in mouse presenting the delQKP1510-1512 mutation (Scn5a+/ΔQKP) equivalent to human deletion. Scn5a+/ΔQKP mice showed prolonged QT interval, conduction defects and ventricular arrhythmias at the age of 2 weeks, and, subsequently, structural defects and premature mortality. The mutation increased Na+ window current and generated a late Na+ current. Ventricular action potentials from Scn5a+/ΔQKP mice were prolonged. At the age of 4 weeks, Scn5a+/ΔQKP mice exhibited a remodeling leading to [Ca2+]i transients with higher amplitude and slower kinetics, combined with enhanced SR Ca2+ load. SERCA2 expression was not altered. However, total phospholamban expression was higher whereas the amount of Ca2+-calmodulin-dependent kinase II (CaMKII)-dependent T17-phosphorylated form was lower, in hearts from 4-week-old mice only. This was associated with a lower activity of CaMKII and lower calmodulin expression. In addition, Scn5a+/ΔQKP cardiomyocytes showed larger Ca2+ waves, correlated with the presence of afterdepolarizations during action potential recording. Ranolazine partially prevented action potential and QT interval prolongation in 4-week-old Scn5a+/ΔQKP mice and suppressed arrhythmias. CONCLUSION: The Scn5a+/ΔQKP mouse model recapitulates the clinical phenotype of mutation carriers and provides new and unexpected insights into the pathological development of the disease in patients carrying the QKP1507-1509 deletion.


Asunto(s)
Calcio/metabolismo , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Síndrome de QT Prolongado/complicaciones , Síndrome de QT Prolongado/metabolismo , Potenciales de Acción , Animales , Cardiomiopatías/diagnóstico , Cardiomiopatías/mortalidad , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ecocardiografía , Electrocardiografía , Pruebas de Función Cardíaca , Inmunohistoquímica , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/tratamiento farmacológico , Ratones , Ratones Noqueados , Imagen Molecular , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Fenotipo , Propranolol/farmacología , Transducción de Señal , Tasa de Supervivencia
13.
J Biol Chem ; 292(42): 17431-17448, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28882890

RESUMEN

Voltage-gated Na+ (NaV) channels are key regulators of myocardial excitability, and Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent alterations in NaV1.5 channel inactivation are emerging as a critical determinant of arrhythmias in heart failure. However, the global native phosphorylation pattern of NaV1.5 subunits associated with these arrhythmogenic disorders and the associated channel regulatory defects remain unknown. Here, we undertook phosphoproteomic analyses to identify and quantify in situ the phosphorylation sites in the NaV1.5 proteins purified from adult WT and failing CaMKIIδc-overexpressing (CaMKIIδc-Tg) mouse ventricles. Of 19 native NaV1.5 phosphorylation sites identified, two C-terminal phosphoserines at positions 1938 and 1989 showed increased phosphorylation in the CaMKIIδc-Tg compared with the WT ventricles. We then tested the hypothesis that phosphorylation at these two sites impairs fibroblast growth factor 13 (FGF13)-dependent regulation of NaV1.5 channel inactivation. Whole-cell voltage-clamp analyses in HEK293 cells demonstrated that FGF13 increases NaV1.5 channel availability and decreases late Na+ current, two effects that were abrogated with NaV1.5 mutants mimicking phosphorylation at both sites. Additional co-immunoprecipitation experiments revealed that FGF13 potentiates the binding of calmodulin to NaV1.5 and that phosphomimetic mutations at both sites decrease the interaction of FGF13 and, consequently, of calmodulin with NaV1.5. Together, we have identified two novel native phosphorylation sites in the C terminus of NaV1.5 that impair FGF13-dependent regulation of channel inactivation and may contribute to CaMKIIδc-dependent arrhythmogenic disorders in failing hearts.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Insuficiencia Cardíaca/metabolismo , Activación del Canal Iónico , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Sustitución de Aminoácidos , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Células HEK293 , Insuficiencia Cardíaca/genética , Humanos , Ratones , Ratones Transgénicos , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.5/genética , Fosforilación
14.
Europace ; 20(12): 2014-2020, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688407

RESUMEN

Aims: QT prolongation during mental stress test (MST) has been associated with familial idiopathic ventricular fibrillation. In long QT syndrome (LQTS), up to 30% of mutation carriers have normal QT duration. Our aim was to assess the QT response during MST, and its accuracy in the diagnosis of concealed LQTS. Methods and results: All patients who are carrier of a KCNQ1 or KCNH2 mutations without QT prolongation were enrolled. A control group was constituted of patients with negative exercise and epinephrine tests. Electrocardiogram were recorded at rest and at the maximum heart rate during MST and reviewed by two physicians. Among the 70 patients enrolled (median age 41±2.1 years, 46% male), 36 were mutation carrier for LQTS (20 KCNQ1 and 16 KCNH2), and 34 were controls. KCNQ1 and KCNH2 mutation carriers presented a longer QT interval at baseline [405(389; 416) and 421 (394; 434) ms, respectively] compared with the controls [361(338; 375)ms; P < 0.0001]. QT duration during MST varied by 9 (4; 18) ms in KCNQ1, 3 (-6; 16) ms in KCNH2, and by -22 (-29; -17) ms in controls (P < 0.0001). These QT variations were independent of heart rate (P < 0.3751). Receiver operating characteristic curve analysis identified a cut-off value of QT variation superior to -11 ms as best predictor of LQTS. It provided 97% sensitivity and 97% specificity of QT prolongation in the diagnosis of LQTS. Conclusion: We identified a paradoxical response of the QT interval during MST in LQTS. Easy to assess, MST may be efficient to unmask concealed LQTS in patients at risk of this pathology.


Asunto(s)
Electrocardiografía , Frecuencia Cardíaca/genética , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ2/genética , Síndrome de QT Prolongado/diagnóstico , Mutación , Estrés Psicológico/fisiopatología , Fibrilación Ventricular/diagnóstico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Humanos , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Masculino , Conceptos Matemáticos , Persona de Mediana Edad , Fenotipo , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Factores de Riesgo , Estrés Psicológico/diagnóstico , Estrés Psicológico/psicología , Fibrilación Ventricular/genética , Fibrilación Ventricular/fisiopatología , Adulto Joven
15.
J Mol Cell Cardiol ; 99: 1-13, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27590098

RESUMEN

Patients with HIV present with a higher prevalence of QT prolongation, of which molecular bases are still not clear. Among HIV proteins, Tat serves as a transactivator that stimulates viral genes expression and is required for efficient HIV replication. Tat is actively secreted into the blood by infected T-cells and affects organs such as the heart. Tat has been shown to alter cardiac repolarization in animal models but how this is mediated and whether this is also the case in human cells is unknown. In the present study, we show that Tat transfection in heterologous expression systems led to a decrease in hERG (underlying cardiac IKr) and human KCNE1-KCNQ1 (underlying cardiac IKs) currents and to an acceleration of their deactivation. This is consistent with a decrease in available phosphatidylinositol-(4,5)-bisphosphate (PIP2). A mutant Tat, unable to bind PIP2, did not reproduce the observed effects. In addition, WT-Tat had no effect on a mutant KCNQ1 which is PIP2-insensitive, further confirming the hypothesis. Twenty-four-hour incubation of human induced pluripotent stem cells-derived cardiomyocytes with Wild-type Tat reduced IKr and accelerated its deactivation. Concordantly, this Tat incubation led to a prolongation of the action potential (AP) duration. Events of AP alternans were also recorded in the presence of Tat, and were exacerbated at a low pacing cycle length. Altogether, these data obtained on human K+ channels both in heterologous expression systems and in human cardiomyocytes suggest that Tat sequesters PIP2, leading to a reduction of IKr and IKs, and provide a molecular mechanism for QT prolongation in HIV-infected patients.


Asunto(s)
Potenciales de Acción , Fosfatidilinositol 4,5-Difosfato/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Animales , Células COS , Diferenciación Celular , Línea Celular , Canal de Potasio ERG1/metabolismo , Fenómenos Electrofisiológicos , Expresión Génica , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Canal de Potasio KCNQ1/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Canales de Potasio con Entrada de Voltaje/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transfección , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
16.
Front Physiol ; 15: 1326663, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322613

RESUMEN

Introduction: Sudden cardiac death (SCD) and ventricular fibrillation are rare but severe complications of many cardiovascular diseases and represent a major health issue worldwide. Although the primary causes are often acute or chronic coronary diseases, genetic conditions, such as inherited channelopathies or non-ischemic cardiomyopathies are leading causes of SCD among the young. However, relevant experimental models to study the underlying mechanisms of arrhythmias and develop new therapies are still needed. The number of genetically engineered mouse models with cardiac phenotype is growing, making electrophysiological studies in mice essential tools to study arrhythmogenicity and arrhythmia mechanisms and to test novel treatments. Recently, intracardiac catheterization via the jugular vein was described to induce and record ventricular arrhythmias in living anesthetized mice. Several strategies have been reported, developed in healthy wild-type animals and based on aggressive right ventricular stimulation. Methods: Here, we report a protocol based on programmed electrical stimulation (PES) performed in clinical practice in patients with cardiac rhythm disorders, adapted to two transgenic mice models of arrhythmia - Brugada syndrome and cardiolaminopathy. Results: We show that this progressive protocol, based on a limited number of right ventricular extrastimuli, enables to reveal different rhythmic phenotypes between control and diseased mice. In this study, we provide detailed information on PES in mice, including catheter positioning, stimulation protocols, intracardiac and surface ECG interpretation and we reveal a higher susceptibility of two mouse lines to experience triggered ventricular arrhythmias, when compared to control mice. Discussion: Overall, this technique allows to characterize arrhythmias and provides results in phenotyping 2 arrhythmogenic-disease murine models.

17.
Stem Cell Res ; 77: 103396, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522388

RESUMEN

Mutations in the DES gene, which encodes the intermediate filament desmin, lead to desminopathy, a rare disease characterized by skeletal muscle weakness and different forms of cardiomyopathies associated with cardiac conduction defects and arrhythmias. We generated human induced pluripotent stem cells (hiPSC) from a patient carrying the DES p.R406W mutation, and employed CRISPR/Cas9 to rectify the mutation in the patient's hiPSC line and introduced the mutation in an hiPSC line from a control individual unrelated to the patient. These hiPSC lines represent useful models for delving into the mechanisms of desminopathy and developing new therapeutic approaches.


Asunto(s)
Desmina , Células Madre Pluripotentes Inducidas , Mutación , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Desmina/metabolismo , Desmina/genética , Línea Celular , Sistemas CRISPR-Cas , Técnicas de Sustitución del Gen , Diferenciación Celular
18.
Cells ; 12(11)2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37296595

RESUMEN

Controversial reports have suggested that SARS-CoV E and 3a proteins are plasma membrane viroporins. Here, we aimed at better characterizing the cellular responses induced by these proteins. First, we show that expression of SARS-CoV-2 E or 3a protein in CHO cells gives rise to cells with newly acquired round shapes that detach from the Petri dish. This suggests that cell death is induced upon expression of E or 3a protein. We confirmed this by using flow cytometry. In adhering cells expressing E or 3a protein, the whole-cell currents were not different from those of the control, suggesting that E and 3a proteins are not plasma membrane viroporins. In contrast, recording the currents on detached cells uncovered outwardly rectifying currents much larger than those observed in the control. We illustrate for the first time that carbenoxolone and probenecid block these outwardly rectifying currents; thus, these currents are most probably conducted by pannexin channels that are activated by cell morphology changes and also potentially by cell death. The truncation of C-terminal PDZ binding motifs reduces the proportion of dying cells but does not prevent these outwardly rectifying currents. This suggests distinct pathways for the induction of these cellular events by the two proteins. We conclude that SARS-CoV-2 E and 3a proteins are not viroporins expressed at the plasma membrane.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Cricetulus , Membrana Celular , Células CHO
19.
J Proteome Res ; 11(12): 5994-6007, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23092124

RESUMEN

Cardiac voltage-gated Na+ (Nav) channels are key determinants of action potential waveforms, refractoriness and propagation, and Nav1.5 is the main Nav pore-forming (α) subunit in the mammalian heart. Although direct phosphorylation of the Nav1.5 protein has been suggested to modulate various aspects of Nav channel physiology and pathophysiology, native Nav1.5 phosphorylation sites have not been identified. In the experiments here, a mass spectrometry (MS)-based proteomic approach was developed to identify native Nav1.5 phosphorylation sites directly. Using an anti-NavPAN antibody, Nav channel complexes were immunoprecipitated from adult mouse cardiac ventricles. The MS analyses revealed that this antibody immunoprecipitates several Nav α subunits in addition to Nav1.5, as well as several previously identified Nav channel associated/regulatory proteins. Label-free comparative and data-driven phosphoproteomic analyses of purified cardiac Nav1.5 protein identified 11 phosphorylation sites, 8 of which are novel. All the phosphorylation sites identified except one in the N-terminus are in the first intracellular linker loop, suggesting critical roles for this region in phosphorylation-dependent cardiac Nav channel regulation. Interestingly, commonly used prediction algorithms did not reliably predict these newly identified in situ phosphorylation sites. Taken together, the results presented provide the first in situ map of basal phosphorylation sites on the mouse cardiac Nav1.5 α subunit.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Espectrometría de Masas/métodos , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Algoritmos , Secuencia de Aminoácidos , Animales , Anticuerpos/metabolismo , Sitios de Unión , Cromatografía Liquida , Inmunoprecipitación , Ratones , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Proteómica/métodos , Reproducibilidad de los Resultados
20.
J Biol Chem ; 286(1): 707-16, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-20940310

RESUMEN

Voltage-dependent potassium (Kv) channels are tetramers of six transmembrane domain (S1-S6) proteins. Crystallographic data demonstrate that the tetrameric pore (S5-S6) is surrounded by four voltage sensor domains (S1-S4). One key question remains: how do voltage sensors (S4) regulate pore gating? Previous mutagenesis data obtained on the Kv channel KCNQ1 highlighted the critical role of specific residues in both the S4-S5 linker (S4S5(L)) and S6 C terminus (S6(T)). From these data, we hypothesized that S4S5(L) behaves like a ligand specifically interacting with S6(T) and stabilizing the closed state. To test this hypothesis, we designed plasmid-encoded peptides corresponding to portions of S4S5(L) and S6(T) of the voltage-gated potassium channel KCNQ1 and evaluated their effects on the channel activity in the presence and absence of the ancillary subunit KCNE1. We showed that S4S5(L) peptides inhibit KCNQ1, in a reversible and state-dependent manner. S4S5(L) peptides also inhibited a voltage-independent KCNQ1 mutant. This inhibition was competitively prevented by a peptide mimicking S6(T), consistent with S4S5(L) binding to S6(T). Val(254) in S4S5(L) is known to contact Leu(353) in S6(T) when the channel is closed, and mutations of these residues alter the coupling between the two regions. The same mutations introduced in peptides altered their effects, further confirming S4S5(L) binding to S6(T). Our results suggest a mechanistic model in which S4S5(L) acts as a voltage-dependent ligand bound to its receptor on S6 at rest. This interaction locks the channel in a closed state. Upon plasma membrane depolarization, S4 pulls S4S5(L) away from S6(T), allowing channel opening.


Asunto(s)
Conductividad Eléctrica , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Activación del Canal Iónico , Canal de Potasio KCNQ1/genética , Cinética , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis , Mutación , Fragmentos de Péptidos/metabolismo , Porosidad , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/metabolismo , Unión Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA