Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(12): 8768-8779, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38483318

RESUMEN

2'-Deoxynucleosides and analogues play a vital role in drug development, but their preparation remains a significant challenge. Previous studies have focused on ß-2'-deoxynucleosides with the natural ß-configuration. In fact, their isomeric α-2'-deoxynucleosides also exhibit diverse bioactivities and even better metabolic stability. Herein, we report that both α- and ß-2'-deoxynucleosides can be prepared with high yields and stereoselectivity using a remote directing diphenylphosphinoyl (DPP) group. It is particularly efficient to prepare α-2'-deoxynucleosides with an easily accessible 3,5-di-ODPP donor. Instead of acting as a H-bond acceptor on a 2-(diphenylphosphinoyl)acetyl (DPPA) group in our previous studies for syn-facial O-glycosylation, the phosphine oxide moiety here acts as a remote participating group to enable highly antifacial N-glycosylation. This proposed remote participation mechanism is supported by our first characterization of an important 1,5-briged P-heterobicyclic intermediate via variable-temperature NMR spectroscopy. Interestingly, antiproliferative assays led to a α-2'-deoxynucleoside with IC50 values in the low micromole range against central nervous system tumor cell lines SH-SY5Y and LN229, whereas its ß-anomer exhibited no inhibition at 100 µM. Furthermore, the DPP group significantly enhanced the antitumor activities by 10 times.


Asunto(s)
Neuroblastoma , Fosfinas , Humanos , Glicosilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA