Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 527(7576): 100-104, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26479035

RESUMEN

The development of life-threatening cancer metastases at distant organs requires disseminated tumour cells' adaptation to, and co-evolution with, the drastically different microenvironments of metastatic sites. Cancer cells of common origin manifest distinct gene expression patterns after metastasizing to different organs. Clearly, the dynamic interaction between metastatic tumour cells and extrinsic signals at individual metastatic organ sites critically effects the subsequent metastatic outgrowth. Yet, it is unclear when and how disseminated tumour cells acquire the essential traits from the microenvironment of metastatic organs that prime their subsequent outgrowth. Here we show that both human and mouse tumour cells with normal expression of PTEN, an important tumour suppressor, lose PTEN expression after dissemination to the brain, but not to other organs. The PTEN level in PTEN-loss brain metastatic tumour cells is restored after leaving the brain microenvironment. This brain microenvironment-dependent, reversible PTEN messenger RNA and protein downregulation is epigenetically regulated by microRNAs from brain astrocytes. Mechanistically, astrocyte-derived exosomes mediate an intercellular transfer of PTEN-targeting microRNAs to metastatic tumour cells, while astrocyte-specific depletion of PTEN-targeting microRNAs or blockade of astrocyte exosome secretion rescues the PTEN loss and suppresses brain metastasis in vivo. Furthermore, this adaptive PTEN loss in brain metastatic tumour cells leads to an increased secretion of the chemokine CCL2, which recruits IBA1-expressing myeloid cells that reciprocally enhance the outgrowth of brain metastatic tumour cells via enhanced proliferation and reduced apoptosis. Our findings demonstrate a remarkable plasticity of PTEN expression in metastatic tumour cells in response to different organ microenvironments, underpinning an essential role of co-evolution between the metastatic cells and their microenvironment during the adaptive metastatic outgrowth. Our findings signify the dynamic and reciprocal cross-talk between tumour cells and the metastatic niche; importantly, they provide new opportunities for effective anti-metastasis therapies, especially of consequence for brain metastasis patients.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Exosomas/genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , MicroARNs/genética , Fosfohidrolasa PTEN/deficiencia , Microambiente Tumoral , Adaptación Fisiológica/genética , Animales , Astrocitos/citología , Astrocitos/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/metabolismo , Proteínas de Unión al Calcio , Proliferación Celular/genética , Quimiocina CCL2/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo/genética , Evolución Molecular , Exosomas/metabolismo , Femenino , Genes Supresores de Tumor , Humanos , Masculino , Ratones , Proteínas de Microfilamentos , Fosfohidrolasa PTEN/genética , ARN Mensajero/análisis , ARN Mensajero/genética , Microambiente Tumoral/genética , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética
3.
Biochem J ; 447(1): 159-66, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22827337

RESUMEN

The extent and duration of MAPK (mitogen-activated protein kinase) signalling govern a diversity of normal and aberrant cellular outcomes. Genetic and pharmacological disruption of the MAPK-activated kinase RSK (ribosomal S6 kinase) leads to elevated MAPK activity indicative of a RSK-dependent negative feedback loop. Using biochemical, pharmacological and quantitative MS approaches we show that RSK phosphorylates the Ras activator SOS1 (Son of Sevenless homologue 1) in cultured cells on two C-terminal residues, Ser(1134) and Ser(1161). Furthermore, we find that RSK-dependent SOS1 phosphorylation creates 14-3-3-binding sites. We show that mutating Ser(1134) and Ser(1161) disrupts 14-3-3 binding and modestly increases and extends MAPK activation. Together these data suggest that one mechanism whereby RSK negatively regulates MAPK activation is via site-specific SOS1 phosphorylation.


Asunto(s)
Proteínas 14-3-3/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteína SOS1/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Humanos , Ratones , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Células 3T3 NIH , Fosforilación , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína SOS1/química , Proteína SOS1/genética , Serina/química
4.
Mol Cancer Res ; 14(12): 1277-1287, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27655131

RESUMEN

Glioblastoma is a primary brain cancer that is resistant to all treatment modalities. This resistance is due, in large part, to invasive cancer cells that disperse from the main tumor site, escape surgical resection, and contribute to recurrent secondary lesions. The adhesion and signaling mechanisms that drive glioblastoma cell invasion remain enigmatic, and as a result there are no effective anti-invasive clinical therapies. Here we have characterized a novel adhesion and signaling pathway comprised of the integrin αvß8 and its intracellular binding partner, Spinophilin (Spn), which regulates glioblastoma cell invasion in the brain microenvironment. We show for the first time that Spn binds directly to the cytoplasmic domain of ß8 integrin in glioblastoma cells. Genetically targeting Spn leads to enhanced invasive cell growth in preclinical models of glioblastoma. Spn regulates glioblastoma cell invasion by modulating the formation and dissolution of invadopodia. Spn-regulated invadopodia dynamics are dependent, in part, on proper spatiotemporal activation of the Rac1 GTPase. Glioblastoma cells that lack Spn showed diminished Rac1 activities, increased numbers of invadopodia, and enhanced extracellular matrix degradation. Collectively, these data identify Spn as a critical adhesion and signaling protein that is essential for modulating glioblastoma cell invasion in the brain microenvironment. IMPLICATIONS: Tumor cell invasion is a major clinical obstacle in glioblastoma and this study identifies a new signaling pathway regulated by Spinophilin in invasive glioblastoma. Mol Cancer Res; 14(12); 1277-87. ©2016 AACR.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Integrinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Podosomas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Sitios de Unión , Neoplasias Encefálicas/metabolismo , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Glioblastoma/metabolismo , Humanos , Integrinas/química , Ratones , Proteínas de Microfilamentos/química , Invasividad Neoplásica , Trasplante de Neoplasias , Proteínas del Tejido Nervioso/química , Unión Proteica , Transducción de Señal
5.
Mol Cell Biol ; 35(8): 1401-13, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25666508

RESUMEN

Directional cell motility is essential for normal development and physiology, although how motile cells spatiotemporally activate signaling events remains largely unknown. Here, we have characterized an adhesion and signaling unit comprised of protein tyrosine phosphatase (PTP)-PEST and the extracellular matrix (ECM) adhesion receptor ß8 integrin that plays essential roles in directional cell motility. ß8 integrin and PTP-PEST form protein complexes at the leading edge of migrating cells and balance patterns of Rac1 and Cdc42 signaling by controlling the subcellular localization and phosphorylation status of Rho GDP dissociation inhibitor 1 (RhoGDI1). Translocation of Src-phosphorylated RhoGDI1 to the cell's leading edge promotes local activation of Rac1 and Cdc42, whereas dephosphorylation of RhoGDI1 by integrin-bound PTP-PEST promotes RhoGDI1 release from the membrane and sequestration of inactive Rac1/Cdc42 in the cytoplasm. Collectively, these data reveal a finely tuned regulatory mechanism for controlling signaling events at the leading edge of directionally migrating cells.


Asunto(s)
Movimiento Celular , Cadenas beta de Integrinas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 12/metabolismo , Inhibidor alfa de Disociación del Nucleótido Guanina rho/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Células Cultivadas , Proteínas F-Box/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Masculino , Ratones , Fosforilación , Unión Proteica , Mapas de Interacción de Proteínas , Ubiquitina-Proteína Ligasas/metabolismo , Proteína de Unión al GTP rac1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA