RESUMEN
Most ionic liquids (ILs) are not surface-active and cannot, alone, be directed to assemble at surfacesâdespite their potential as nonvolatile structure-directing agents and use as advanced materials in a multitude of applications. In this work, we investigate aqueous systems of common nonionic surfactants (Triton X-100 and Tween 20), which we use to solubilize 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. The resulting solution of mixed micelle leads to spontaneous adsorption of the IL/surfactant complex onto graphene oxide (GO) surfaces, forming a compact film. Adsorption isotherms generated by fluorescence labeling of the IL and surfactant phases are used to quantify the extent of adsorption. While sensitive to the GO dispersion concentration, upwards of 3 g IL/g GO adsorb under dilute conditions. Atomic force microscopy is used to show that the adsorbed layer uniformly distributes as an â¼1 nm thick coating (per GO side) as the system reaches the first plateau of a Langmuir-type isotherm. Adsorption beyond this plateau is possible but leads to thicker (>30 nm), inhomogeneous adsorbed layers. Both micellar size in solution and adsorbed layer thickness reduce upon the addition of IL to the surfactant phase, suggesting significant interactions among the materials and nonideal mixing of the components.
RESUMEN
One of the challenges of using growth factors for tissue regeneration is to monitor their biodistributions and delivery to injured tissues for minimally invasive detection. In the present study, tracking of human vascular endothelial growth factor (VEGF) was achieved by chemically linking it to photoluminescent carbon dots (CDs). Carbon dots were synthesized by the hydrothermal method and, subsequently, conjugated with VEGF using carbodiimide coupling. ELISA and western blot analysis revealed that VEGF-conjugated CDs preserve the binding affinity of VEGF to its antibodies. We also show that VEGF-conjugated CDs maintain the functionality of VEGF for tube formation and cell migration. The VEGF-conjugated CDs were also used for in vitro imaging of human umbilical vein endothelial cells. The results of this work suggest that cell-penetrating VEGF-conjugated CDs can be used for growth factor protein tracking in therapeutic and tissue engineering applications.
Asunto(s)
Colorantes Fluorescentes/química , Puntos Cuánticos/química , Factor A de Crecimiento Endotelial Vascular/farmacología , Carbono/química , Carbono/toxicidad , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colorantes Fluorescentes/toxicidad , Células Endoteliales de la Vena Umbilical Humana , Humanos , Microscopía Confocal , Microscopía Fluorescente , Neovascularización Fisiológica/efectos de los fármacos , Puntos Cuánticos/toxicidad , Factor A de Crecimiento Endotelial Vascular/química , Factor A de Crecimiento Endotelial Vascular/toxicidadRESUMEN
The chirality of nanoparticles (NPs) and their assemblies has been investigated predominantly for noble metals and II-VI semiconductors. However, ceramic NPs represent the majority of nanoscale materials in nature. The robustness and other innate properties of ceramics offer technological opportunities in catalysis, biomedical sciences, and optics. Here we report the preparation of chiral ceramic NPs, as represented by tungsten oxide hydrate, WO3-x·H2O, dispersed in ethanol. The chirality of the metal oxide core, with an average size of ca. 1.6 nm, is imparted by proline (Pro) and aspartic acid (Asp) ligands via bio-to-nano chirality transfer. The amino acids are attached to the NP surface through C-O-W linkages formed from dissociated carboxyl groups and through amino groups weakly coordinated to the NP surface. Surprisingly, the dominant circular dichroism bands for NPs coated by Pro and Asp are different despite the similarity in the geometry of the NPs; they are positioned at 400-700 nm and 500-1100 nm for Pro- and Asp-modified NPs, respectively. The differences in the spectral positions of the main chiroptical band for the two types of NPs are associated with the molecular binding of the two amino acids to the NP surface; Asp has one additional C-O-W linkage compared to Pro, resulting in stronger distortion of the inorganic crystal lattice and greater intensity of CD bands associated with the chirality of the inorganic core. The chirality of WO3-x·H2O atomic structure is confirmed by atomistic molecular dynamics simulations. The proximity of the amino acids to the mineral surface is associated with the catalytic abilities of WO3-x·H2O NPs. We found that NPs facilitate formation of peptide bonds, leading to Asp-Asp and Asp-Pro dipeptides. The chiroptical activity, chemical reactivity, and biocompatibility of tungsten oxide create a unique combination of properties relevant to chiral optics, chemical technologies, and biomedicine.
Asunto(s)
Cerámica/química , Nanopartículas/química , Péptidos/química , Catálisis , Tamaño de la PartículaRESUMEN
Elongated plasmonic nanoparticles show superior optical properties when compared to spherical ones. Facile, versatile and cost-effective bottom-up approaches for fabrication of anisotropic nanoparticles in solution have been developed. However, fabrication of 2-D plasmonic templates from elongated nanoparticles with spatial arrangement at the surface is still a challenge. We used controlled seed-mediated growth in the presence of porous and functionalized surface of flexible polydimethylsiloxane (PDMS) templates to provide directional growth and formation of elongated gold nanoparticles (AuNPs). Atomic force microscopy (AFM) and spectroscopy revealed embedding of the particles within the functionalized porous surface of PDMS. Nanoparticles shapes were observed with transmission electron microscope (TEM), UV-Vis spectroscopy, and X-ray powder diffraction (XRPD) measurements, which revealed an overall orientation of particles at the surface. Anisotropic and oriented particles on a flexible substrate are of interest for sensing applications.
RESUMEN
We report herein on the polymer-crystallization-assisted thiol-ene photosynthesis of an amphiphilic comb/graft DNA copolymer, or molecular brush, composed of a hydrophobic poly(2-oxazoline) backbone and hydrophilic short single-stranded nucleic acid grafts. Coupling efficiencies are above 60% and thus higher as compared with the straight solid-phase-supported synthesis of amphiphilic DNA block copolymers. The DNA molecular brushes self-assemble into sub-micron-sized spherical structures in water as evidenced by light scattering as well as atomic force and electron microscopy imaging. The nucleotide sequences remain functional, as assessed by UV and fluorescence spectroscopy subsequent to isoindol synthesis at the surface of the structures. The determination of a vesicular morphology is supported by encapsulation and subsequent spectroscopy monitoring of the release of a water-soluble dye and spectroscopic quantification of the hybridization efficiency (30% in average) of the functional nucleic acid strands engaged in structure formation: about one-half of the nucleotide sequences are available for hybridization, whereas the other half are hindered within the self-assembled structure. Because speciation between complementary and non complementary sequences in the medium could be ascertained by confocal laser scanning microscopy, the stable self-assembled molecular brushes demonstrate the potential for sensing applications.
Asunto(s)
ADN/química , Nanosferas/química , Oxazoles/química , Técnicas Biosensibles/métodos , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Nanosferas/ultraestructuraRESUMEN
HYPOTHESIS: Coating approaches which trap nanoparticles at an interface have become popular for depositing single-layer films from nanoparticle dispersions. Past efforts concluded that concentration and aspect ratio dominate the impact on aggregation state of nanospheres and nanorods at an interface. Although few works have explored the clustering behaviour of atomically thin, two-dimensional materials, we hypothesize that nanosheet concentration is the dominant factor leading to a particular cluster structure and that this local structure impacts the quality of densified Langmuir films. EXPERIMENTS: We systematically studied cluster structures and Langmuir film morphologies of three different nanosheets, namely chemically exfoliated molybdenum disulfide, graphene oxide and reduced graphene oxide. FINDINGS: We observe cluster structure transitions from island-like domains to more linear networks in all materials as dispersion concentration is reduced. Despite differences in material properties and morphologies, we obtained the same overall correlation between sheet number density (A/V) in the spreading dispersion and cluster fractal structure (df) is observed, with reduced graphene oxide sheets showing a slight delay upon transitioning into a lower-density cluster. Regardless of assembly method, we found that cluster structure impacts the attainable density of transferred Langmuir films. A two-stage clustering mechanism is supported by by considering the spreading profile of solvents and an analysis of interparticle forces at the air-water interface.
RESUMEN
Food, chemicals, agricultural products, drugs, and vaccines should be transported and stored within an appropriate low-temperature range, following cold chain logistics. Violations of the required temperature regime are generally reported by time-temperature indicators; however, current sensors do not cover a sufficiently broad low-temperature range and may lack thermal and photostability. Here, we report a nanostructured solvatochromic temperature indicator formed from cellulose nanocrystals decorated with carbon dots (C-dots). The indicator utilizes a strong nonlinear dependence of photoluminescence of C-dots on the composition of water/dimethyl sulfoxide (DMSO) solvent and a composition-dependent variation of the melting temperature of the water/DMSO mixture. Exceeding the temperature of the frozen mixed solvent above a designated threshold value results in solvent melting, flow, and impregnation of the nanostructured film, thus causing an irreversible change in the intensity and wavelength of photoluminescence emission of the film, which is reported both qualitatively and quantitatively. The indicator covers a temperature range from -68 to +19 °C and is cost-efficient, portable and photo- and thermostable.
Asunto(s)
Dimetilsulfóxido , Refrigeración , Temperatura , Dimetilsulfóxido/química , Solventes/química , Agua/química , Carbono/químicaRESUMEN
Colloidal quantum dots (CQDs) are promising materials for infrared (IR) light detection due to their tunable bandgap and their solution processing; however, to date, the time response of CQD IR photodiodes is inferior to that provided by Si and InGaAs. It is reasoned that the high permittivity of II-VI CQDs leads to slow charge extraction due to screening and capacitance, whereas III-Vs-if their surface chemistry can be mastered-offer a low permittivity and thus increase potential for high-speed operation. In initial studies, it is found that the covalent character in indium arsenide (InAs) leads to imbalanced charge transport, the result of unpassivated surfaces, and uncontrolled heavy doping. Surface management using amphoteric ligand coordination is reported, and it is found that the approach addresses simultaneously the In and As surface dangling bonds. The new InAs CQD solids combine high mobility (0.04 cm2 V-1 s-1 ) with a 4× reduction in permittivity compared to PbS CQDs. The resulting photodiodes achieve a response time faster than 2 ns-the fastest photodiode among previously reported CQD photodiodes-combined with an external quantum efficiency (EQE) of 30% at 940 nm.
RESUMEN
Personalized wound dressings provide enhanced healing for different wound types; however multicomponent wound dressings with discretely controllable delivery of different biologically active agents are yet to be developed. Here we report 3D-printed multicomponent biocomposite hydrogel wound dressings that have been selectively loaded with small molecules, metal nanoparticles, and proteins for independently controlled release at the wound site. Hydrogel wound dressings carrying antibacterial silver nanoparticles and vascular endothelial growth factor with predetermined release profiles were utilized to study the physiological response of the wound in a mouse model. Compared to controls, the application of dressings resulted in improvement in granulation tissue formation and differential levels of vascular density, dependent on the release profile of the growth factor. Our study demonstrates the versatility of the 3D-printed hydrogel dressings that can yield varied physiological responses in vivo and can further be adapted for personalized treatment of various wound types.
Asunto(s)
Nanopartículas del Metal , Ratones , Animales , Nanopartículas del Metal/uso terapéutico , Factor A de Crecimiento Endotelial Vascular , Plata , Vendajes , Hidrogeles , Antibacterianos/farmacología , Impresión TridimensionalRESUMEN
Colloidal quantum dot (QD) solids are emerging semiconductors that have been actively explored in fundamental studies of charge transport1 and for applications in optoelectronics2. Forming high-quality QD solids-necessary for device fabrication-requires substitution of the long organic ligands used for synthesis with short ligands that provide increased QD coupling and improved charge transport3. However, in perovskite QDs, the polar solvents used to carry out the ligand exchange decompose the highly ionic perovskites4. Here we report perovskite QD resurfacing to achieve a bipolar shell consisting of an inner anion shell, and an outer shell comprised of cations and polar solvent molecules. The outer shell is electrostatically adsorbed to the negatively charged inner shell. This approach produces strongly confined perovskite QD solids that feature improved carrier mobility (≥0.01 cm2 V-1 s-1) and reduced trap density relative to previously reported low-dimensional perovskites. Blue-emitting QD films exhibit photoluminescence quantum yields exceeding 90%. By exploiting the improved mobility, we have been able to fabricate CsPbBr3 QD-based efficient blue and green light-emitting diodes. Blue devices with reduced trap density have an external quantum efficiency of 12.3%; the green devices achieve an external quantum efficiency of 22%.
RESUMEN
Chiral inorganic nanostructures have high circular dichroism, but real-time control of their optical activity has so far been achieved only by irreversible chemical changes. Field modulation is a far more desirable path to chiroptical devices. We hypothesized that magnetic field modulation can be attained for chiral nanostructures with large contributions of the magnetic transition dipole moments to polarization rotation. We found that dispersions and gels of paramagnetic Co3O4 nanoparticles with chiral distortions of the crystal lattices exhibited chiroptical activity in the visible range that was 10 times as strong as that of nonparamagnetic nanoparticles of comparable size. Transparency of the nanoparticle gels to circularly polarized light beams in the ultraviolet range was reversibly modulated by magnetic fields. These phenomena were also observed for other nanoscale metal oxides with lattice distortions from imprinted amino acids and other chiral ligands. The large family of chiral ceramic nanostructures and gels can be pivotal for new technologies and knowledge at the nexus of chirality and magnetism.
RESUMEN
Organic molecules imprinting can be used for introducing specific properties and functionalities such as chirality to mesoporous materials. Particularly organic self-assemblies can work as a scaffold for templating inorganic materials such as silica. During recent years chiral imprinting of anionic surfactant for fabrication of twisted rod-like silica structures assisted by co-structuring directing agent were thoroughly investigated. The organic self-assemblies of anionic surfactants can also be used for introducing other shapes in rod-like silica structures. Here we report the formation of amphiphilic N-miristoyl-l-alanine self-assemblies in aqueous solution upon stirring and at presence of l-arginine. These anionic surfactant self-assemblies form fibers that grow by increasing the stirring duration. The fibers were studied using transmission electron microscopy, infra-red spectroscopy and vibrational circular dichroism. Addition of silica precursor 1,2-bis(triethoxysilyl)ethylene and co-structuring directing agent N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride at different stages of fibers' growth leads to formation of different silica structures. By controlling stirring duration, we obtained twisted tubular silica structures as a result of fibers encapsulation. We decorated these structures with gold nanoparticles by different methods and measured their optical activity.