Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 154: 109932, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39343062

RESUMEN

There is growing recognition that the hypoxic regions of the ocean are also becoming more acidic due to increasing levels of global carbon dioxide emissions. The impact of water acidification on marine life is largely unknown, as most previous studies have not taken into account the effects of hypoxia, which may affect how organisms respond to low pH levels. In this study, we experimentally examined the consequences of water acidification in combination with normoxic or hypoxic conditions on cellular immune parameters in Mediterranean mussels. We measured total hemocyte counts in hemolymph, the cellular composition of hemolymph, phagocytosis, reactive oxygen species (ROS) production. General response of the organism was evaluated on the basis of the activity of antioxidant enzymes in the hepatopancreas, as well as respiratory rates over an 8-day exposure period. The mussels were exposed to low pH conditions (7.3), either under normoxic conditions (dissolved oxygen concentration of 8 mg/L) or hypoxic conditions (dissolved oxygen concentration of 2 mg/L). The parameters were assessed at days 1, 3, 6, and 8 of the experiment. Experimental acidification under normoxic conditions reduced THC and ROS production by hemocytes during later stages of exposure, but phagocytic activity (PA) only decreased at day 3 and then recovered. Combined acidification and hypoxia suppressed PA in hemocytes at the beginning of exposure, while hemocyte ROS production and THC decreased by the end of the experiment. The hemolymph cellular composition and activity of antioxidant enzymes were unaffected by acidified conditions under different oxygen regimes, but mussel respiratory rate (RR) decreased with a more significant reduction in oxygen consumption under hypoxia. Mussels showed a relatively high tolerance to acidification in combination with various dissolved oxygen levels, although prolonged acidification exposure led to increased detrimental effects on immunity and metabolism.

2.
Fish Physiol Biochem ; 50(4): 1341-1352, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38647979

RESUMEN

Semi-anadromous animals experience salinity fluctuations during their life-span period. Alterations of environmental conditions induce stress response where catecholamines (CA) play a central role. Physiological stress and changes in external and internal osmolarity are frequently associated with increased production of reactive oxygen species (ROS). In this work, we studied the involvement of the cAMP/PKA pathway in mediating catecholamine-dependent effects on osmoregulatory responses, intracellular production of ROS, and mitochondrial membrane potential of the river lamprey (Lampetra fluviatilis, Linnaeus, 1758) red blood cells (RBCs). We also investigated the role of hypoosmotic shock in the process of ROS production and mitochondrial respiration of RBCs. For this, osmotic stability and the dynamics of the regulatory volume decrease (RVD) following hypoosmotic swelling, intracellular ROS levels, and changes in mitochondrial membrane potential were assessed in RBCs treated with epinephrine (Epi, 25 µM) and forskolin (Forsk, 20 µM). Epi and Forsk markedly reduced the osmotic stability of the lamprey RBCs whereas did not affect the dynamics of the RVD response in a hypoosmotic environment. Activation of PKA with Epi and Forsk increased ROS levels and decreased mitochondrial membrane potential of the lamprey RBCs. In contrast, upon hypoosmotic shock enhanced ROS production in RBCs was accompanied by increased mitochondrial membrane potential. Overall, a decrease in RBC osmotic stability and the enhancement of ROS formation induced by ß-adrenergic stimulation raises concerns about stress-associated changes in RBC functions in agnathans. Increased ROS production in RBCs under hypoosmotic shock indicates that a decrease in blood osmolarity may be associated with oxidative damage of RBCs during lamprey migration.


Asunto(s)
Epinefrina , Eritrocitos , Lampreas , Potencial de la Membrana Mitocondrial , Presión Osmótica , Especies Reactivas de Oxígeno , Animales , Eritrocitos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Presión Osmótica/efectos de los fármacos , Lampreas/fisiología , Epinefrina/farmacología , Colforsina/farmacología , Osmorregulación/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38636724

RESUMEN

Boring sponge infection affects growth, development and reduces the soft tissue weight of oysters. In this study, we investigated the effects of boring sponge on the activity of three antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GP)) in the mantle, and the production of reactive oxygen species (ROS) and potential genotoxicity in hemocytes of the Pacific oyster Magallana gigas. Our results showed a significant increase in ROS production and DNA damage in hemocytes. Notably, the activity of SOD, CAT, and GP in the mantle was not significantly affected by boring sponge infection. Collectively, these results suggest that sponge invasion may cause oxidative stress in Pacific oyster hemocytes through ROS overproduction.


Asunto(s)
Ostreidae , Estrés Oxidativo , Poríferos , Especies Reactivas de Oxígeno , Animales , Ostreidae/metabolismo , Poríferos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo , Hemocitos/metabolismo , Glutatión Peroxidasa/metabolismo , Daño del ADN
4.
Chemosphere ; 363: 142884, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019185

RESUMEN

Nanoparticles (NPs) are widely used in various fields, including antifouling paints for ships and industrial structures submerged in water. The potential impact of NPs on aquatic organisms, particularly their potential toxicity, is a significant concern, as their negative impact has been relatively poorly studied. In this study, we evaluated the effect of different concentrations of bimetallic Ag-TiO2 and ZnTi2O4-TiO2 NPs, which could potentially be used in antifouling coatings, on the hemocytes of the Mediterranean mussel Mytilus galloprovincialis. Hemocytes were exposed to NPs at concentrations of 0.1-1 mg/L for 1 and 2 h, and the production of reactive oxygen species (ROS), levels of DNA damage, and number of dead cells were measured. Exposure to Ag-TiO2 NPs at 1 mg/L concentration for 1 h suppressed ROS production in hemocytes and reduced the relative number of agranulocytes in cell suspensions, without inducing DNA damage or cell death. Exposure to ZnTi2O4-TiO2 NPs did not cause changes in the ratio of granulocytes to agranulocytes in suspensions, nor did it affect other functional parameters of hemocytes. However, after a 2 h exposure period, ZnTi2O4-TiO2 NPs (1 mg/L) significantly reduced the production of ROS by hemocytes. These findings suggest that Ag-TiO2 and ZnTi2O4-TiO2 NPs have low acute toxicity for marine bivalves.


Asunto(s)
Daño del ADN , Hemocitos , Nanopartículas del Metal , Mytilus , Especies Reactivas de Oxígeno , Plata , Titanio , Contaminantes Químicos del Agua , Animales , Mytilus/efectos de los fármacos , Titanio/toxicidad , Hemocitos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Plata/toxicidad , Nanopartículas del Metal/toxicidad , Contaminantes Químicos del Agua/toxicidad , Zinc/toxicidad
5.
Mar Pollut Bull ; 201: 116174, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382322

RESUMEN

Methane are widely used in industry as an emerge source may be released significantly higher aquatic ecosystems due to gas seepages. In this study, short-term (90 min) methane effects on bivalve hemocytes were investigated using flow cytometry. Hemocyte parameters including hemolymph cellular composition, phagocytosis activity, mitochondrial membrane potential and reactive oxygen species (ROS) content were evaluated in the mussel Mytilus galloprovincialis (Lamarck, 1819) exposed to hypoxia (control group), pure methane and industrial methane (industrial hydrocarbon mixture). Comparison of biomarkers showed that the mussel was more sensitive to methane than to low oxygen concentration, supporting the effects of methane on the mussel's immune system. After exposure to pure and industrial methane, the number of granulocytes decreased dramatically and the levels of reactive oxygen species, mitochondrial membrane potential and phagocytosis capacity increased significantly. It was shown that the methane type-dependent effect was pronounced, with industrial methane leading to more pronounced changes.


Asunto(s)
Mytilus , Animales , Hemocitos , Especies Reactivas de Oxígeno , Metano , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA