Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Exp Physiol ; 109(6): 966-979, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38594909

RESUMEN

The acute exudative phase of acute respiratory distress syndrome (ARDS), a severe form of respiratory failure, is characterized by alveolar damage, pulmonary oedema, and an exacerbated inflammatory response. There is no effective treatment for this condition, but based on the major contribution of inflammation, anti-inflammatory strategies have been evaluated in animal models and clinical trials, with conflicting results. In COVID-19 ARDS patients, interleukin (IL)-1 and IL-6 receptor antagonists (IL-1Ra and IL-6Ra, kineret and tocilizumab, respectively) have shown some efficacy. Moreover, we have previously developed novel peptides modulating IL-1R and IL-6R activity (rytvela and HSJ633, respectively) while preserving immune vigilance and cytoprotective pathways. We aimed to assess the efficacy of these novel IL-1Ra and IL-6Ra, compared to commercially available drugs (kineret, tocilizumab) during the exudative phase (day 7) of bleomycin-induced acute lung injury (ALI) in mice. Our results first showed that none of the IL-1Ra and IL-6Ra compounds attenuated bleomycin-induced weight loss and venous P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ increase. Histological analyses and lung water content measurements also showed that these drugs did not improve lung injury scores or pulmonary oedema, after the bleomycin challenge. Finally, IL-1Ra and IL-6Ra failed to alleviate the inflammatory status of the mice, as indicated by cytokine levels and alveolar neutrophil infiltration. Altogether, these results indicate a lack of beneficial effects of IL-1R and IL-6R antagonists on key parameters of ALI in the bleomycin mouse model.


Asunto(s)
Lesión Pulmonar Aguda , Anticuerpos Monoclonales Humanizados , Modelos Animales de Enfermedad , Receptores de Interleucina-6 , Animales , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Ratones , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Receptores de Interleucina-6/antagonistas & inhibidores , Receptores de Interleucina-6/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Bleomicina , Pulmón/metabolismo , Pulmón/efectos de los fármacos
2.
Am J Physiol Cell Physiol ; 325(6): C1502-C1515, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37899751

RESUMEN

G-coupled protein receptors (GPCRs) are the ultimate refuge of pharmacology and medicine as more than 40% of all marketed drugs are directly targeting these receptors. Through cell surface expression, they are at the forefront of cellular communication with the outside world. Metabolites among the conveyors of this communication are becoming more prominent with the recognition of them as ligands for GPCRs. HCAR1 is a GPCR conveyor of lactate. It is a class A GPCR coupled to Gαi which reduces cellular cAMP along with the downstream Gßγ signaling. It was first found to inhibit lipolysis, and lately has been implicated in diverse cellular processes, including neural activities, angiogenesis, inflammation, vision, cardiovascular function, stem cell proliferation, and involved in promoting pathogenesis for different conditions, such as cancer. Other than signaling from the plasma membrane, HCAR1 shows nuclear localization with different location-biased activities therein. Although different functions for HCAR1 are being discovered, its cell and molecular mechanisms are yet ill understood. Here, we provide a comprehensive review on HCAR1, which covers the literature on the subject, and discusses its importance and relevance in various biological phenomena.


Asunto(s)
Fenómenos Biológicos , Ácido Láctico , Ácido Láctico/metabolismo , Transducción de Señal , Receptores Acoplados a Proteínas G/metabolismo , Membrana Celular/metabolismo
3.
J Neuroinflammation ; 20(1): 241, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864272

RESUMEN

BACKGROUND: Perinatal infection/inflammation is associated with a high risk for neurological injury and neurodevelopmental impairment after birth. Despite a growing preclinical evidence base, anti-inflammatory interventions have not been established in clinical practice, partly because of the range of potential targets. We therefore systematically reviewed preclinical studies of immunomodulation to improve neurological outcomes in the perinatal brain and assessed their therapeutic potential. METHODS: We reviewed relevant studies published from January 2012 to July 2023 using PubMed, Medline (OvidSP) and EMBASE databases. Studies were assessed for risk of bias using the SYRCLE risk of bias assessment tool (PROSPERO; registration number CRD42023395690). RESULTS: Forty preclinical publications using 12 models of perinatal neuroinflammation were identified and divided into 59 individual studies. Twenty-seven anti-inflammatory agents in 19 categories were investigated. Forty-five (76%) of 59 studies reported neuroprotection, from all 19 categories of therapeutics. Notably, 10/10 (100%) studies investigating anti-interleukin (IL)-1 therapies reported improved outcome, whereas half of the studies using corticosteroids (5/10; 50%) reported no improvement or worse outcomes with treatment. Most studies (49/59, 83%) did not control core body temperature (a known potential confounder), and 25 of 59 studies (42%) did not report the sex of subjects. Many studies did not clearly state whether they controlled for potential study bias. CONCLUSION: Anti-inflammatory therapies are promising candidates for treatment or even prevention of perinatal brain injury. Our analysis highlights key knowledge gaps and opportunities to improve preclinical study design that must be addressed to support clinical translation.


Asunto(s)
Antiinflamatorios , Neuroprotección , Embarazo , Animales , Femenino , Humanos , Encéfalo
4.
Cell Commun Signal ; 21(1): 196, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37940970

RESUMEN

The GPCR HCAR1 is known to be the sole receptor for lactate, which modulates its metabolic effects. Despite its significant role in many processes, mice deficient in HCAR1 exhibit no visible phenotype and are healthy and fertile. We performed transcriptomic analysis on HCAR1 deficient cells, in combination with lactate, to explore pathophysiologically altered processes. Processes such as immune regulation, various cancers, and neurodegenerative diseases were significantly enriched for HCAR1 transcriptomic signature. However, the most affected process of all was autism spectrum disorder. We performed behavioral tests on HCAR1 KO mice and observed that these mice manifest autistic-like behavior. Our data opens new avenues for research on HCAR1 and lactate effect at a pathological level. Video Abstract.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ratones , Animales , Ácido Láctico/metabolismo , Transducción de Señal , Receptores Acoplados a Proteínas G/metabolismo
5.
Am J Obstet Gynecol ; 228(4): 467.e1-467.e16, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36244408

RESUMEN

BACKGROUND: Preterm birth is the leading cause of neonatal morbidity and mortality. Studies have shown that interleukin 1 plays a major role in the pathophysiology of preterm birth by inducing the production of proinflammatory mediators and uterine activation proteins leading to labor. More importantly, uteroplacental inflammation, associated with preterm birth parturition pathways, is detrimental to fetal tissues and leads to long-term sequelae. Our group has developed an allosteric antagonist of the interleukin 1 receptor, rytvela, found to be potent and safe in preventing preterm birth by suppressing inflammation via the inhibition of the mitogen-activated protein kinase pathway while preserving the Nuclear factor kappa B pathway (important in immune vigilance). Rytvela has been shown to inhibit inflammatory up-regulation and uterine activation while preserving fetal development. OBJECTIVE: This study aimed to further the preclinical development of rytvela by evaluating its optimal dose and minimal duration of treatment to inhibit the inflammatory cascade, prolong gestation, and promote neonatal outcomes. STUDY DESIGN: Pregnant CD-1 mice were administered with lipopolysaccharide (10 µg, intraperitoneal administration) or interleukin 1 (1 µg/kg, intrauterine administration) on gestational day 16 to induce preterm labor. Rytvela was administered at different doses (0.1, 0.5, 1.0, 2.0, 4.0 mg/kg/d subcutaneously) from gestational days 16 to 18.5. To evaluate the minimal duration of treatment, the mice were administered with rytvela (2 mg/kg/d subcutaneously) for 24, 36, or 48 hours. The rate of prematurity (gestational day <18.5) and neonate survival and weight were evaluated. Gestational tissues were collected at gestational day 17.5 to quantify cytokines, proinflammatory mediators, and uterine activating proteins by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. The neonatal lungs and intestines were collected from postnatal days 5 to 7 and analyzed by histology. RESULTS: Rytvela exhibited a dose-response profile and achieved maximum efficacy at a dose of 2 mg/kg/d by reducing 70% of lipopolysaccharide-induced preterm births and 60% of interleukin 1ß-induced preterm births. In addition, rytvela attained maximum efficacy at a dose of 1 mg/kg/d by increasing neonate survival by up to 65% in both models of preterm birth. Rytvela protected fetuses from inflammatory insult as of 24 hours, preserving lung and intestinal integrity, and prevented preterm birth and fetal mortality by 60% and 50%, respectively, as of 36 hours of treatment. CONCLUSION: The maximum efficacy of rytvela was achieved at 2 mg/kg/d with improved birth outcomes and prevented inflammatory up-regulation upon 36 hours (only) of treatment. Rytvela exhibited desirable properties for the safe prevention of preterm birth and fetal protection.


Asunto(s)
Nacimiento Prematuro , Recién Nacido , Embarazo , Humanos , Femenino , Animales , Ratones , Nacimiento Prematuro/prevención & control , Lipopolisacáridos/efectos adversos , Feto , Inflamación , Antiinflamatorios , Interleucina-1
6.
J Pept Sci ; 29(3): e3455, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36184819

RESUMEN

In pursuit of more effective-labor delaying tocolytic agents, the prostaglandin F2α (PGF2α) receptor (FP) modulator PDC113.824 [(6S)-2] represents a potent lead for developing therapy to treat preterm birth. Derivatives of FP modulator (6S)-2 were synthesized, possessing respectively 5- and 7-hydroxyl groups on the indolizidin-2-one amino acid (I2 aa) residue. The effects of the alcohol substituents were examined in a PGF2α-induced myometrial contraction assay. Based on knowledge of dihedral angle values of model I2 aa peptides from X-ray analyses, the results of the study indicate respectively encouraging and limited potential for creating improved tocolytic agents by modifications at the 5- and 7-positions.


Asunto(s)
Nacimiento Prematuro , Tocolíticos , Femenino , Recién Nacido , Humanos , Tocolíticos/farmacología , Dinoprost/farmacología , Contracción Uterina , Miometrio
7.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37685993

RESUMEN

Endothelial Progenitor Cells (EPCs) can actively participate in revascularization in oxygen-induced retinopathy (OIR). Yet the mechanisms responsible for their dysfunction is unclear. Nogo-A, whose function is traditionally related to the inhibition of neurite function in the central nervous system, has recently been documented to display anti-angiogenic pro-repellent properties. Based on the significant impact of EPCs in retinal vascularization, we surmised that Nogo-A affects EPC function, and proceeded to investigate the role of Nogo-A on EPC function in OIR. The expression of Nogo-A and its specific receptor NgR1 was significantly increased in isolated EPCs exposed to hyperoxia, as well as in EPCs isolated from rats subjected to OIR compared with respective controls (EPCs exposed to normoxia). EPCs exposed to hyperoxia displayed reduced migratory and tubulogenic activity, associated with the suppressed expression of prominent EPC-recruitment factors SDF-1/CXCR4. The inhibition of Nogo-A (using a Nogo-66 neutralizing antagonist peptide) or siRNA-NGR1 in hyperoxia-exposed EPCs restored SDF-1/CXCR4 expression and, in turn, rescued the curtailed neovascular functions of EPCs in hyperoxia. The in vivo intraperitoneal injection of engineered EPCs (Nogo-A-inhibited or NgR1-suppressed) in OIR rats at P5 (prior to exposure to hyperoxia) prevented retinal and choroidal vaso-obliteration upon localization adjacent to vasculature; coherently, the inhibition of Nogo-A/NgR1 in EPCs enhanced the expression of key angiogenic factors VEGF, SDF-1, PDGF, and EPO in retina; CXCR4 knock-down abrogated suppressed NgR1 pro-angiogenic effects. The findings revealed that hyperoxia-induced EPC malfunction is mediated to a significant extent by Nogo-A/NgR1 signaling via CXCR4 suppression; the inhibition of Nogo-A in EPCs restores specific angiogenic growth factors in retina and the ensuing vascularization of the retina in an OIR model.


Asunto(s)
Células Progenitoras Endoteliales , Hiperoxia , Enfermedades de la Retina , Animales , Ratas , Oxígeno/efectos adversos , Proteínas Nogo/genética , Hiperoxia/complicaciones
8.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36293057

RESUMEN

Corneal wound healing involves communication between the different cell types that constitute the three cellular layers of the cornea (epithelium, stroma and endothelium), a process ensured in part by a category of extracellular vesicles called exosomes. In the present study, we isolated exosomes released by primary cultured human corneal epithelial cells (hCECs), corneal fibroblasts (hCFs) and corneal endothelial cells (hCEnCs) and determined whether they have wound healing characteristics of their own and to which point they modify the genetic and proteomic pattern of these cell types. Exosomes released by all three cell types significantly accelerated wound closure of scratch-wounded hCECs in vitro compared to controls (without exosomes). Profiling of activated kinases revealed that exosomes from human corneal cells caused the activation of signal transduction mediators that belong to the HSP27, STAT, ß-catenin, GSK-3ß and p38 pathways. Most of all, data from gene profiling analyses indicated that exosomes, irrespective of their cellular origin, alter a restricted subset of genes that are completely different between each targeted cell type (hCECs, hCFS, hCEnCs). Analysis of the genes specifically differentially regulated for a given cell-type in the microarray data using the Ingenuity Pathway Analysis (IPA) software revealed that the mean gene expression profile of hCECs cultured in the presence of exosomes would likely promote cell proliferation and migration whereas it would reduce differentiation when compared to control cells. Collectively, our findings represent a conceptual advance in understanding the mechanisms of corneal wound repair that may ultimately open new avenues for the development of novel therapeutic approaches to improve closure of corneal wounds.


Asunto(s)
Lesiones de la Cornea , Exosomas , Humanos , Exosomas/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células Endoteliales/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Proteómica , Cicatrización de Heridas/fisiología , Córnea/metabolismo , Lesiones de la Cornea/metabolismo , Células Epiteliales/metabolismo , Movimiento Celular
9.
Development ; 145(1)2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29180574

RESUMEN

MicroRNAs are key regulators of angiogenesis, as illustrated by the vascular defects observed in miR-126-deficient animals. The miR-126 duplex gives rise to two mature microRNAs (miR-126-3p and -5p). The vascular defects in these mutant animals were attributed to the loss of miR-126-3p but the role of miR-126-5p during normal angiogenesis in vivo remains unknown. Here, we show that miR-126-5p is expressed in endothelial cells but also by retinal ganglion cells (RGCs) of the mouse postnatal retina and participates in protecting endothelial cells from apoptosis during the establishment of the retinal vasculature. miR-126-5p negatively controls class 3 semaphorin protein (Sema3A) in RGCs through the repression of SetD5, an uncharacterized member of the methyltransferase family of proteins. In vitro, SetD5 controls Sema3A expression independently of its SET domain and co-immunoprecipitates with BRD2, a bromodomain protein that recruits transcription regulators onto the chromatin. Both SetD5 and BRD2 bind to the transcription start site and to upstream promoter regions of the Sema3a locus and BRD2 is necessary for the regulation of Sema3A expression by SetD5. Thus, neuronally expressed miR-126-5p regulates angiogenesis by protecting endothelial cells of the developing retinal vasculature from apoptosis.


Asunto(s)
Apoptosis/fisiología , Células Endoteliales/metabolismo , Metiltransferasas/biosíntesis , MicroARNs/biosíntesis , Neuronas/metabolismo , Retina/metabolismo , Animales , Supervivencia Celular/fisiología , Células Endoteliales/citología , Ratones , Ratones Noqueados , MicroARNs/genética , Neovascularización Fisiológica/fisiología , Neuronas/citología , Elementos de Respuesta/fisiología , Retina/citología , Semaforina-3A/genética , Semaforina-3A/metabolismo
10.
PLoS Biol ; 16(5): e2003619, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29771909

RESUMEN

During the development of the visual system, high levels of energy are expended propelling axons from the retina to the brain. However, the role of intermediates of carbohydrate metabolism in the development of the visual system has been overlooked. Here, we report that the carbohydrate metabolites succinate and α-ketoglutarate (α-KG) and their respective receptor-GPR91 and GPR99-are involved in modulating retinal ganglion cell (RGC) projections toward the thalamus during visual system development. Using ex vivo and in vivo approaches, combined with pharmacological and genetic analyses, we revealed that GPR91 and GPR99 are expressed on axons of developing RGCs and have complementary roles during RGC axon growth in an extracellular signal-regulated kinases 1 and 2 (ERK1/2)-dependent manner. However, they have no effects on axon guidance. These findings suggest an important role for these receptors during the establishment of the visual system and provide a foundational link between carbohydrate metabolism and axon growth.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Proyección Neuronal , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2/metabolismo , Retina/embriología , Animales , Ácidos Cetoglutáricos/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Noqueados , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Ácido Succínico/metabolismo
11.
Neurol Sci ; 42(4): 1287-1299, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33464411

RESUMEN

Traumatic brain injury is one of the leading causes of morbidity and mortality throughout the world. Its increasing incidence, in addition to its fundamental role in the development of neurodegenerative disease, proves especially concerning. Despite extensive preclinical and clinical studies, researchers have yet to identify a safe and effective neuroprotective strategy. Following brain trauma, secondary injury from molecular, metabolic, and cellular changes causes progressive cerebral tissue damage. Chronic neuroinflammation following traumatic brain injuries is a key player in the development of secondary injury. Targeting this phenomenon for development of effective neuroprotective therapies holds promise. This strategy warrants a concrete understanding of complex neuroinflammatory mechanisms. In this review, we discuss pathophysiological mechanisms such as the innate immune response, glial activation, blood-brain barrier disruption, activation of immune mediators, as well as biological markers of traumatic brain injury. We then review existing and emerging pharmacological therapies that target neuroinflammation to improve functional outcome.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Enfermedades Neurodegenerativas , Encéfalo , Lesiones Traumáticas del Encéfalo/complicaciones , Humanos , Inflamación
12.
Acta Paediatr ; 110(9): 2521-2528, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34028096

RESUMEN

AIM: To explore the current literature on prenatal inflammation-associated risk factors for retinopathy of prematurity (ROP). METHODS: Subjective summary of selected experimental and epidemiological publications that support the authors' central hypothesis that the aetiology of ROP begins before birth. RESULTS: Based on current evidence we suggest that, contrary to current aetiological models, the process of ROP development begins with a prephase in utero. This beginning is likely initiated by inflammatory responses that are associated with intrauterine infection. CONCLUSION: We propose a novel aetio-pathogenetic model of ROP and suggest that the effects of postnatal exposure to inflammatory stressors (resulting from infection or hyperoxia or both) as well as those of other pre- and postnatal contributors to the complex pathogenesis of ROP might be modified by the prenatal phase of the disease.


Asunto(s)
Retinopatía de la Prematuridad , Femenino , Edad Gestacional , Humanos , Recién Nacido , Recien Nacido Prematuro , Recién Nacido de muy Bajo Peso , Embarazo , Retinopatía de la Prematuridad/epidemiología , Retinopatía de la Prematuridad/etiología , Factores de Riesgo
13.
PLoS Med ; 17(12): e1003477, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33306685

RESUMEN

BACKGROUND: Hyperglycemia in preterm infants may be associated with severe retinopathy of prematurity (ROP) and other morbidities. However, it is uncertain which concentration of blood glucose is associated with increased risk of tissue damage, with little consensus on the cutoff level to treat hyperglycemia. The objective of our study was to examine the association between hyperglycemia and severe ROP in premature infants. METHODS AND FINDINGS: In 2 independent, monocentric cohorts of preterm infants born at <30 weeks' gestation (Nantes University Hospital, 2006-2016, primary, and Lyon-HFME University Hospital, 2009-2017, validation), we first analyzed the association between severe (stage 3 or higher) ROP and 2 markers of glucose exposure between birth and day 21-maximum value of glycemia (MaxGly1-21) and mean of daily maximum values of glycemia (MeanMaxGly1-21)-using logistic regression models. In both the primary (n = 863 infants, mean gestational age 27.5 ± 1.4 weeks, boys 52.5%; 38 with severe ROP; 54,083 glucose measurements) and the validation cohort (n = 316 infants, mean gestational age 27.4 ± 1.4 weeks, boys 51.3%), MaxGly1-21 and MeanMaxGly1-21 were significantly associated with an increased risk of severe ROP: odds ratio (OR) 1.21 (95% CI 1.14-1.27, p < 0.001) and OR 1.70 (95% CI 1.48-1.94, p < 0.001), respectively, in the primary cohort and OR 1.17 (95% CI 1.05-1.32, p = 0.008) and OR 1.53 (95% CI 1.20-1.95, p < 0.001), respectively, in the validation cohort. These associations remained significant after adjustment for confounders in both cohorts. Second, we identified optimal cutoff values of duration of exposure above each concentration of glycemia between 7 and 13 mmol/l using receiver operating characteristic curve analyses in the primary cohort. Optimal cutoff values for predicting stage 3 or higher ROP were 9, 6, 5, 3, 2, 2, and 1 days above a glycemic threshold of 7, 8, 9, 10, 11, 12, and 13 mmol/l, respectively. Severe exposure was defined as at least 1 exposure above 1 of the optimal cutoffs. Severe ROP was significantly more common in infants with severe exposure in both the primary (10.9% versus 0.6%, p < 0.001) and validation (5.2% versus 0.9%, p = 0.030) cohorts. Finally, we analyzed the association between insulin therapy and severe ROP in a national population-based prospectively recruited cohort (EPIPAGE-2, 2011, n = 1,441, mean gestational age 27.3 ± 1.4, boys 52.5%) using propensity score weighting. Insulin use was significantly associated with severe ROP in overall cohort crude analyses (OR 2.51 [95% CI 1.13-5.58], p = 0.024). Adjustment for inverse propensity score (gestational age, sex, birth weight percentile, multiple birth, spontaneous preterm birth, main pregnancy complications, surfactant therapy, duration of oxygen exposure between birth and day 28, digestive state at day 7, caloric intake at day 7, and highest glycemia during the first week) and duration of oxygen therapy had a large but not significant effect on the association between insulin treatment and severe ROP (OR 0.40 [95% CI 0.13-1.24], p = 0.106). Limitations of this study include its observational nature and, despite the large number of patients included compared to earlier similar studies, the lack of power to analyze the association between insulin use and retinopathy. CONCLUSIONS: In this study, we observed that exposure to high glucose concentration is an independent risk factor for severe ROP, and we identified cutoff levels that are significantly associated with increased risk. The clinical impact of avoiding exceeding these thresholds to prevent ROP deserves further evaluation.


Asunto(s)
Glucemia/efectos de los fármacos , Control Glucémico , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Recien Nacido Prematuro , Insulina/uso terapéutico , Retinopatía de la Prematuridad/prevención & control , Biomarcadores/sangre , Glucemia/metabolismo , Femenino , Francia , Edad Gestacional , Control Glucémico/efectos adversos , Humanos , Hiperglucemia/sangre , Hiperglucemia/complicaciones , Hipoglucemiantes/efectos adversos , Recién Nacido , Insulina/efectos adversos , Masculino , Estudios Prospectivos , Factores Protectores , Retinopatía de la Prematuridad/etiología , Medición de Riesgo , Factores de Riesgo , Índice de Severidad de la Enfermedad , Resultado del Tratamiento
14.
J Neuroinflammation ; 17(1): 359, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33246504

RESUMEN

BACKGROUND: Inflammation and particularly interleukin-1ß (IL-1ß), a pro-inflammatory cytokine highly secreted by activated immune cells during early AMD pathological events, contribute significantly to retinal neurodegeneration. Here, we identify specific cell types that generate IL-1ß and harbor the IL-1 receptor (IL-1R) and pharmacologically validate IL-1ß's contribution to neuro-retinal degeneration using the IL-1R allosteric modulator composed of the amino acid sequence rytvela (as well as the orthosteric antagonist, Kineret) in a model of blue light-induced retinal degeneration. METHODS: Mice were exposed to blue light for 6 h and sacrificed 3 days later. Mice were intraperitoneally injected with rytvela, Kineret, or vehicle twice daily for 3 days. The inflammatory markers F4/80, NLRP3, caspase-1, and IL-1ß were assessed in the retinas. Single-cell RNA sequencing was used to determine the cell-specific expression patterns of retinal Il1b and Il1r1. Macrophage-induced photoreceptor death was assessed ex vivo using retinal explants co-cultured with LPS-activated bone marrow-derived macrophages. Photoreceptor cell death was evaluated by the TUNEL assay. Retinal function was assessed by flash electroretinography. RESULTS: Blue light markedly increased the mononuclear phagocyte recruitment and levels of inflammatory markers associated with photoreceptor death. Co-localization of NLRP3, caspase-1, and IL-1ß with F4/80+ mononuclear phagocytes was clearly detected in the subretinal space, suggesting that these inflammatory cells are the main source of IL-1ß. Single-cell RNA sequencing confirmed the immune-specific expression of Il1b and notably perivascular macrophages in light-challenged mice, while Il1r1 expression was found primarily in astrocytes, bipolar, and vascular cells. Retinal explants co-cultured with LPS/ATP-activated bone marrow-derived macrophages displayed a high number of TUNEL-positive photoreceptors, which was abrogated by rytvela treatment. IL-1R antagonism significantly mitigated the inflammatory response triggered in vivo by blue light exposure, and rytvela was superior to Kineret in preserving photoreceptor density and retinal function. CONCLUSION: These findings substantiate the importance of IL-1ß in neuro-retinal degeneration and revealed specific sources of Il1b from perivascular MPs, with its receptor Ilr1 being separately expressed on surrounding neuro-vascular and astroglial cells. They also validate the efficacy of rytvela-induced IL-1R modulation in suppressing detrimental inflammatory responses and preserving photoreceptor density and function in these conditions, reinforcing the rationale for clinical translation.


Asunto(s)
Interleucina-1beta/inmunología , Péptidos/farmacología , Células Fotorreceptoras/patología , Receptores de Interleucina-1/antagonistas & inhibidores , Degeneración Retiniana/patología , Animales , Modelos Animales de Enfermedad , Inflamación/inmunología , Inflamación/patología , Interleucina-1beta/metabolismo , Macrófagos/inmunología , Macrófagos/patología , Masculino , Ratones , Células Fotorreceptoras/efectos de los fármacos , Degeneración Retiniana/inmunología
15.
Am J Pathol ; 189(11): 2340-2356, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31430465

RESUMEN

Retinopathy of prematurity (ROP) is characterized by an initial retinal avascularization, followed by pathologic neovascularization. Recently, choroidal thinning has also been detected in children formerly diagnosed with ROP; a similar sustained choroidal thinning is observed in ROP models. But the mechanism underlying the lack of choroidal revascularization remains unclear and was investigated in an oxygen-induced retinopathy (OIR) model. In OIR, evidence of senescence was detected, preceded by oxidative stress in the choroid and the retinal pigment epithelium. This was associated with a global reduction of proangiogenic factors, including insulin-like growth factor 1 receptor (Igf1R). Coincidentally, tumor suppressor p53 was highly expressed in the OIR retinae. Curtailing p53 activity resulted in reversal of senescence, normalization of Igf1r expression, and preservation of choroidal integrity. OIR-induced down-regulation of Igf1r was mediated at least partly by miR-let-7b as i) let-7b expression was augmented throughout and beyond the period of oxygen exposure, ii) let-7b directly targeted Igf1r mRNA, and iii) p53 knock-down blunted let-7b expression, restored Igf1r expression, and elicited choroidal revascularization. Finally, restoration of Igf1r expression rescued choroid thickness. Altogether, this study uncovers a significant mechanism for defective choroidal revascularization in OIR, revealing a new role for p53/let-7b/IGF-1R axis in the retina. Future investigations on this (and connected) pathway could further our understanding of other degenerative choroidopathies, such as geographic atrophy.


Asunto(s)
Coroides/irrigación sanguínea , Coroides/efectos de los fármacos , MicroARNs/fisiología , Neovascularización Fisiológica/efectos de los fármacos , Oxígeno/efectos adversos , Retinopatía de la Prematuridad/genética , Retinopatía de la Prematuridad/patología , Proteína p53 Supresora de Tumor/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Coroides/metabolismo , Coroides/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Células HEK293 , Humanos , Neovascularización Fisiológica/genética , Oxígeno/farmacología , Ratas , Ratas Long-Evans , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Retinopatía de la Prematuridad/fisiopatología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
16.
Am J Pathol ; 189(9): 1878-1896, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31220454

RESUMEN

Ischemic retinopathies are characterized by a progressive microvascular degeneration followed by a postischemic aberrant neovascularization. To reinstate vascular supply and metabolic equilibrium to the ischemic tissue during ischemic retinopathies, a dysregulated production of growth factors and metabolic intermediates occurs, promoting retinal angiogenesis. Glycolysis-derived lactate, highly produced during ischemic conditions, has been associated with tumor angiogenesis and wound healing. Lactate exerts its biological effects via G-protein-coupled receptor 81 (GPR81) in several tissues; however, its physiological functions and mechanisms of action in the retina remain poorly understood. Herein, we show that GPR81, localized predominantly in Müller cells, governs deep vascular complex formation during development and in ischemic retinopathy. Lactate-stimulated GPR81 Müller cells produce numerous angiogenic factors, including Wnt ligands and particularly Norrin, which contributes significantly in triggering inner retinal blood vessel formation. Conversely, GPR81-null mice retina shows reduced inner vascular network formation associated with low levels of Norrin (and Wnt ligands). Lactate accumulation during ischemic retinopathy selectively activates GPR81-extracellular signal-regulated kinase 1/2-Norrin signaling to accelerate inner retinal vascularization in wild-type animals, but not in the retina of GPR81-null mice. Altogether, we reveal that lactate via GPR81-Norrin participates in inner vascular network development and in restoration of the vasculature in response to injury. These findings suggest a new potential therapeutic target to alleviate ischemic diseases.


Asunto(s)
Células Ependimogliales/patología , Proteínas del Ojo/metabolismo , Isquemia/patología , Proteínas del Tejido Nervioso/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Enfermedades de la Retina/patología , Neovascularización Retiniana/patología , Vasos Retinianos/patología , Proteínas Wnt/metabolismo , Animales , Células Ependimogliales/metabolismo , Proteínas del Ojo/genética , Isquemia/etiología , Isquemia/metabolismo , Ácido Láctico/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Enfermedades de la Retina/etiología , Enfermedades de la Retina/metabolismo , Neovascularización Retiniana/etiología , Neovascularización Retiniana/metabolismo , Vasos Retinianos/metabolismo , Proteínas Wnt/genética
17.
J Cell Physiol ; 234(3): 2851-2865, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30132865

RESUMEN

High nuclear expression of G protein-coupled receptors, including kinin B1 receptors (B1R), has been observed in several human cancers, but the clinical significance of this is unknown. We put forward the hypothesis that these "nuclearized" kinin B1R contribute to tumorigenicity and can be a new target in anticancer strategies. Our initial immunostaining and ultrastructural electron microscopy analyses demonstrated high B1R expression predominantly located at internal/nuclear compartments in the MDA-MB-231 triple-negative breast cancer (TNBC) cell line as well as in clinical samples of patients with TNBC. On the basis of these findings, in the present study, we evaluated the anticancer therapeutic potential of newly identified, cell-permeable B1R antagonists in MDA-MB-231 cells (ligand-receptor binding/activity assays and LC-MS/MS analyses). We found that these compounds (SSR240612, NG67, and N2000) were more toxic to MDA-MB-231 cells in comparison with low- or non-B1R expressing MCF-10A normal human mammary epithelial cells and COS-1 cells, respectively (clonogenic, MTT proliferative/cytocidal assays, and fluorescence-activated cell-sorting (FACS)-based apoptosis analyses). By comparison, the peptide B1R antagonist R954 unable to cross cell membrane failed to produce anticancer effects. Furthermore, the putative mechanisms underlying the anticancer activities of cell-penetrant B1R antagonists were assessed by analyzing cell cycle regulation and signaling molecules related to cell survival and apoptosis (FACS and western blot). Finally, drug combination experiments showed that cell-penetrant B1R antagonists can cooperate with suboptimal doses of chemotherapeutic agents (doxorubicin and paclitaxel) to promote TNBC death. This study provides evidence on the potential value of internally acting kinin B1R antagonists in averting growth of breast cancer.


Asunto(s)
Péptidos de Penetración Celular/farmacología , Receptor de Bradiquinina B1/genética , Receptores Acoplados a Proteínas G/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Antagonistas del Receptor de Bradiquinina B1/farmacología , Células COS , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/genética , Chlorocebus aethiops , Doxorrubicina/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Paclitaxel/farmacología , Transducción de Señal/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
18.
Biol Reprod ; 100(3): 783-797, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30379983

RESUMEN

Birth is a complex biological event requiring genetic, cellular, and physiological changes to the uterus, resulting in a uterus activated for completing the physiological processes of labor. We define the change from the state of pregnancy to the state of parturition as uterine transitioning, which requires the actions of inflammatory mediators and localized paracrine interactions between intrauterine tissues. Few studies have examined the in vitro interactions between fetal and maternal gestational tissues within this proinflammatory environment. Thus, we designed a co-culture model to address this gap, incorporating primary term human myometrium smooth muscle cells (HMSMCs) with human fetal membrane (hFM) explants to study interactions between the tissues. We hypothesized that crosstalk between tissues at term promotes proinflammatory expression and uterine transitioning for parturition. Outputs of 40 cytokines and chemokines encompassing a variety of proinflammatory roles were measured; all but one increased significantly with co-culture. Eighteen of the 39 cytokines increased to a higher abundance than the sum of the effect of each tissue cultured separately. In addition, COX2 and IL6 but not FP and OXTR mRNA abundance significantly increased in both HMSMCs and hFM in response to co-culture. These data suggest that synergistic proinflammatory upregulation within intrauterine tissues is involved with uterine transitioning.


Asunto(s)
Citocinas/metabolismo , Membranas Extraembrionarias/citología , Miocitos del Músculo Liso/fisiología , Miometrio/citología , Comunicación Paracrina/fisiología , Útero/fisiología , Células Cultivadas , Técnicas de Cocultivo , Citocinas/genética , Femenino , Regulación de la Expresión Génica , Humanos , Transducción de Señal , Regulación hacia Arriba
19.
Biol Reprod ; 100(5): 1370-1385, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30794283

RESUMEN

The change from the state of pregnancy to the state of parturition, which we call uterine transitioning, requires the actions of inflammatory mediators and results in an activated uterus capable of performing the physiology of labor. Interleukin (IL)-1ß and prostaglandin (PG)F2α are two key mediators implicated in preparing the uterus for labor by regulating the expression of uterine activation proteins (UAPs) and proinflammatory cytokines and chemokines. To investigate this process, primary human myometrial smooth muscle cells (HMSMC) isolated from the lower segment of women undergoing elective cesarean sections at term (not in labor) were used to test the inflammatory cytokine and UAP outputs induced by PGF2α and IL-1ß alone or in sequential combinations. PGF2α and IL-1ß regulate mRNA abundance of the PGF2α receptor FP, the IL-1 receptor system, interleukin 6, and other UAPs (OXTR, COX2), driving positive feedback interactions to further amplify their own proinflammatory effects. Sequential stimulation of HMSMC by PGF2α and IL-1ß in either order results in amplified upregulation of IL-6 and COX-2 mRNA and protein, compared to their effects individually. These profound increases were unique to myometrium and not observed with stimulation of human fetal membrane explants. These results suggest that PGF2α and IL-1ß act cooperatively upstream in the birth cascade to maximize amplification of IL-6 and COX-2, to build inflammatory load and thereby promote uterine transition. Targeting PGF2α or IL-1ß, their actions, or intermediates (e.g. IL-6) would be an effective therapeutic intervention for preterm birth prevention or delay.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Dinoprost/metabolismo , Regulación de la Expresión Génica/fisiología , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Miometrio/citología , Células Cultivadas , Ciclooxigenasa 2/genética , Dinoprost/genética , Membranas Extraembrionarias/metabolismo , Femenino , Humanos , Interleucina-1beta/genética , Interleucina-6/genética , Trabajo de Parto/metabolismo , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Técnicas de Cultivo de Tejidos
20.
Cytokine ; 121: 154738, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31158699

RESUMEN

Crohn's disease (CD) and ulcerative colitis (UC) are the two major forms of inflammatory bowel disease (IBD). These idiopathic and chronic diseases result from inflammation of the gastrointestinal tract and are mainly mediated by the immune system. Genome wide association studies link genes of the IL-12 and IL-23 biology to both CD and UC susceptibility. IL-12 and IL-23 cytokines share a functional subunit, p40, and their respective receptors also share a functional subunit, IL-12Rß1. However, clinical trials targeting p40, and thus inhibiting both IL-12 and IL-23 pathways, provided mitigated effects on IBD, suggesting context dependent effects for each cytokine. In addition to IL-12 and IL-23, genetic deficiencies in IL-10 also result in severe IBD pathology. We generated various mouse models to determine how IL-12 or IL-23 interacts with IL-10 in IBD pathology. Whereas defects in both IL-10 and IL-12R do not impact the severity of the Dextran Sulfate Sodium (DSS)-induced colitis, combined deficiencies in both IL-10 and IL-23R aggravate the disease. In contrast to DSS-induced colitis, defects in IL-12R and IL-23R both protect from the spontaneous colitis observed in IL10-/- mice. Together, these studies exemplify the complexity of genetic and environmental interactions for identifying biological pathways predictive of pathological inflammatory processes.


Asunto(s)
Colitis/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Transducción de Señal , Animales , Sulfato de Dextran , Modelos Animales de Enfermedad , Inflamación/patología , Enfermedades Inflamatorias del Intestino/patología , Interleucina-10/deficiencia , Ratones Endogámicos C57BL , Receptores de Interleucina/deficiencia , Receptores de Interleucina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA