Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Immunol ; 25(4): 622-632, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38454157

RESUMEN

The development of a vaccine specific to severe acute respiratory syndrome coronavirus 2 Omicron has been hampered due to its low immunogenicity. Here, using reverse mutagenesis, we found that a phenylalanine-to-serine mutation at position 375 (F375S) in the spike protein of Omicron to revert it to the sequence found in Delta and other ancestral strains significantly enhanced the immunogenicity of Omicron vaccines. Sequence FAPFFAF at position 371-377 in Omicron spike had a potent inhibitory effect on macrophage uptake of receptor-binding domain (RBD) nanoparticles or spike-pseudovirus particles containing this sequence. Omicron RBD enhanced binding to Siglec-9 on macrophages to impair phagocytosis and antigen presentation and promote immune evasion, which could be abrogated by the F375S mutation. A bivalent F375S Omicron RBD and Delta-RBD nanoparticle vaccine elicited potent and broad nAbs in mice, rabbits and rhesus macaques. Our research suggested that manipulation of the Siglec-9 pathway could be a promising approach to enhance vaccine response.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Conejos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Macaca mulatta , Macrófagos , Nanovacunas , Fagocitosis , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico
2.
NPJ Vaccines ; 9(1): 176, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39341822

RESUMEN

T helper cells, particularly T follicular helper (TFH) cells, are essential for the neutralizing antibody production elicited by pathogens or vaccines. However, in immunocompromised individuals, the inefficient support from TFH cells could lead to limited protection after vaccine inoculation. Here we showed that the conjugation of inducible T cell costimulatory (ICOS) onto the nanoparticle, together with immunogen, significantly enhanced the immune response of the vaccines specific for SARS-CoV-2 or human immunodeficiency virus type-1 (HIV-1) in TFH-deficient mice. Further studies indicated that ICOSL on B cells was triggered by ICOS binding, subsequently activated the PKCß signaling pathway, and enhanced the survival and proliferation of B cells. Our findings revealed that the stimulation of ICOS-ICOSL interaction by adding ICOS on the nanoparticle vaccine significantly substitutes the function of TFH cells to support B cell response, which is significant for the immunocompromised people, such as the elderly or HIV-1-infected individuals.

3.
Front Immunol ; 13: 992062, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569949

RESUMEN

As the global COVID-19 pandemic continues and new SARS-CoV-2 variants of concern emerge, vaccines remain an important tool for preventing the pandemic. The inactivated or subunit vaccines themselves generally exhibit low immunogenicity, which needs adjuvants to improve the immune response. We previously developed a receptor binding domain (RBD)-targeted and self-assembled nanoparticle to elicit a potent immune response in both mice and rhesus macaques. Herein, we further improved the RBD production in the eukaryote system by in situ Crispr/Cas9-engineered CHO cells. By comparing the immune effects of various Toll-like receptor-targeted adjuvants to enhance nanoparticle vaccine immunization, we found that Pam2CSK4, a TLR2/6 agonist, could mostly increase the titers of antigen-specific neutralizing antibodies and durability in humoral immunity. Remarkably, together with Pam2CSK4, the RBD-based nanoparticle vaccine induced a significant Th1-biased immune response and enhanced the differentiation of both memory T cells and follicular helper T cells. We further found that Pam2CSK4 upregulated migration genes and many genes involved in the activation and proliferation of leukocytes. Our data indicate that Pam2CSK4 targeting TLR2, which has been shown to be effective in tuberculosis vaccines, is the optimal adjuvant for the SARS-CoV-2 nanoparticle vaccine, paving the way for an immediate clinical trial.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Humanos , Ratones , Cricetinae , Receptor Toll-Like 2/genética , Cricetulus , Macaca mulatta , Pandemias , SARS-CoV-2 , COVID-19/prevención & control , Adyuvantes Inmunológicos/farmacología , Adyuvantes Farmacéuticos , Inmunidad Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA