Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Biodivers ; 18(12): e2100638, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34788487

RESUMEN

Cuminum cyminum L. (Cumin) is a flavoring agent that is commonly used worldwide, and is rich in essential oil. Essential oils (Eos) have been intensively investigated in regard to their potential for disease control in plants, which is provided a chance for the blossom of green pesticides. The chemical components of Cumin essential oil (CEO) were revealed by GC/MS, such as cuminaldehyde (44.53 %), p-cymene (12.14 %), (-)-ß-pinene (10.47 %) and γ-terpinene (8.40 %), and found they can inhibit the growth of P. notoginseng-associated pathogenic fungi in vitro and the inhibitory effect of cuminaldehyde was similar to that of hymexazol. SEM and TEM images demonstrated that cuminaldehyde and CEO increased cell permeability and disrupted membrane integrity. The expression of disease-related genes of Fusarium oxysporum showed that CEO induced the expression of most genes, which disrupted biosynthesis, metabolism and signaling pathways. These studies verified the potential of CEO as a plant fungicide that is environmentally friendly and provided ideas for developing new products for controlling root diseases that affect P. notoginseng.


Asunto(s)
Antifúngicos/farmacología , Cuminum/química , Fusarium/efectos de los fármacos , Aceites Volátiles/farmacología , Panax notoginseng/microbiología , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación
2.
Chem Biodivers ; 17(12): e2000520, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33184961

RESUMEN

Panax notoginseng (Burkill) F.H.Chen (Araliaceae), of which the dry root and rhizome are precious traditional Chinese medicine, suffers severely from diseases during planting. Essential oils (EOs) with antimicrobial activity are a possibility for the development of green pesticides. We extracted EOs from Pogostemon cablin (Blanco) Benth. and Eupatorium fortunei Turcz., respectively and tested their inhibitory rates on fungi isolated from diseased P. notoginseng by the Oxford cup method. The compounds of the EO were identified by GC/MS and the minimum inhibitory concentrations (MICs) of the EOs and their main components were evaluated by the 96-well plate method. We also mixed P. cablin EO, E. fortunei EO and hymexazol in pairs to explore whether their combinations produce stronger antifungal effects than individual components. Finally, we evaluated the effects of the EOs against Fusarium oxysporum in vivo. P. cablin EO and E. fortunei EO exhibited different antifungal activities against fungi, with the inhibitory rates of 21.02 %-100 % and 54.84 %-100 % and MICs of 0.07-0.88 mg/mL and 0.20-1.17 mg/mL, respectively. Pogostone (24.96 %) and thymol (15.64 %) were the major compounds of P. cablin EO and E. fortunei EO, respectively, and they exhibited stronger antifungal activities than EOs, with MICs of 0.008-0.078 mg/mL and 0.12-0.31 mg/mL, respectively. Moreover, hymexazol was mixed with E. fortunei EO, and the inhibitory effect against Cylindrocarpon destructans was enhanced with a synergistic effect. The disease incidence and disease index of EO treatments decreased significantly in vivo. Based on our study, P. cablin EO and E. fortunei EO have great potential to be developed into green fungicides for use in agriculture to control diseases of P. notoginseng.


Asunto(s)
Eupatorium/química , Hongos/efectos de los fármacos , Aceites Volátiles/farmacología , Panax notoginseng/química , Pogostemon/química , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Sensibilidad Microbiana
3.
Chem Biodivers ; 16(4): e1800688, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30839164

RESUMEN

Panax notoginseng root is a traditional Chinese herb, of which the yield and quality have been seriously affected by microorganisms, and is commonly used to treat various kinds of bleeding. In this experiment, the effects of the antifungal properties of essential oils (EOs) from five kinds of Rutaceae plants on the growth of three kinds of pathogens were studied to develop natural, environmentally friendly antifungal agents. Citrus medica EO was found to have stronger inhibitory effects on the growth of pathogenic fungi in vitro than other EOs with the Oxford cup method, of which the chemical composition was further investigated by GC/MS. The major components were d-limonene (22.79 %) and γ-terpinene (9.71 %). The antifungal activities were evaluated by MIC and FIC assays. In these assays, C. medica EO, d-limonene and γ-terpinene were effective against three pathogens of P. notoginseng with MIC values ranging from 0.12 to 12.05 mg/mL. The association between hymexazol and C. medica EO showed a high synergistic effect with lower FIC index values (FICi=0.31-2.00). Furthermore, C. medica EO was further assessed in P. notoginseng planted in a continuous cropping soil (CCS) and was found to reduce the disease incidence and disease severity compared with P. notoginseng planted in CCS only without EO addition. This finding suggested that C. medica EO has potential as a natural environmentally antifungal agent against pathogens of P. notoginseng, ensuring its safety.


Asunto(s)
Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Fusarium/efectos de los fármacos , Aceites Volátiles/farmacología , Rutaceae/química , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Relación Estructura-Actividad
4.
Chem Biodivers ; 16(11): e1900416, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31631505

RESUMEN

The frequent disease of Panax notoginseng caused by the pathogenic fungi in field cultivation has become the major threaten to the sustainable development of it. The present study was conducted to find natural agent with potential inhibition against pathogen. Therefore, the inhibitory effects of Cinnamomum cassia (L.) J.Presl essential oils (EOs) against P. notoginseng associated pathogenic fungi were conducted both in vitro and in vivo experiments. The results of the Oxford cup test revealed that C. cassia dry bark EO (50 mg/mL) had significant inhibitory activity on the growth of all tested fungi, and the growth of various pathogens was completely inhibited, except for that of Fusarium solani. Therefore, the constituents of C. cassia EOs were analyzed by GC/MS, and the research demonstrated that the main constituents of C. cassia dry bark EO were trans-cinnamaldehyde (75.65 %), (E)-2-methoxycinnamaldehyde (6.08 %), cinnamaldehyde (3.47 %) and cinnamyl acetate (1.02 %). The MIC results showed that C. cassia dry bark EO and the main compounds had good antifungal effect on the tested strains, and the inhibitory effect was similar to that of hymexazol (chemical pesticide). By analyzing the value of the fraction inhibitory concentration index (FICI), additive effects, irrelevant effects and synergistic effects were observed after the mixture of hymexazol against various pathogens. Moreover, in vivo model showed that C. cassia dry bark EO could reduce the occurrence of anthrax in P. notoginseng. To widen the resources of C. cassia available, the compositions of both C. cassia fresh bark and leaf EOs were also tested and many common compositions existed among them. Taken together, it was concluded that C. cassia EO had the potential use in the field to reduce the pathogenic disease.


Asunto(s)
Antifúngicos/farmacología , Cinnamomum aromaticum/química , Fusarium/efectos de los fármacos , Aceites Volátiles/farmacología , Panax notoginseng/efectos de los fármacos , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Panax notoginseng/microbiología
5.
Molecules ; 24(1)2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30626142

RESUMEN

Root rot of Panax notoginseng has received great attention due to its threat on the plantation and sustainable utilization of P. notoginseng. To suppress the root-rot disease, natural ingredients are of great importance because of their environment friendly properties. In this study, we found that the methanol extract from Artemisia annua leaves has strong antifungal effects on the growth of Fusarium oxysporum and Fusarium solani resulting into root-rot disease. Essential oil (EO) thereof was found to be the most active. GC-MS analysis revealed 58 ingredients and camphor, camphene, ß-caryophyllene, and germacrene D were identified as the major ingredients. Further antifungal assays showed that the main compounds exhibit various degrees of inhibition against all the fungi tested. In addition, synergistic effects between A. annua EO and chemical fungicides were examined. Finally, in vivo experiments were conducted and disclosed that P. notoginseng root rot could be largely inhibited by the petroleum ether extract from A. annua, indicating that A. annua could be a good source for controlling P. notoginseng root-rot.


Asunto(s)
Antifúngicos/farmacología , Artemisia annua/química , Fusarium/efectos de los fármacos , Panax notoginseng/microbiología , Enfermedades de las Plantas/microbiología , Extractos Vegetales/farmacología , Raíces de Plantas/microbiología , Antifúngicos/química , Sinergismo Farmacológico , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química
6.
Molecules ; 23(4)2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29614031

RESUMEN

Chemical agents in the rhizosphere soils of plants might have an influence on root-rot disease, which therefore might reveal the mechanism of root rot in Panax notoginseng (P. notoginseng). With this hypothesis the alterations of phenolic acids (PAs) in the rhizosphere soils of P. notoginseng after pathogen infection were determined. The effects of PAs on the growth of Fusarium oxysporum (F. oxysporum), a fungal pathogenic factor for P. notoginseng, as well as production of fusaric acid, a wilting agent for the plants, were also examined. The results indicate the presence of five PAs (ferulic acid, syringic acid, p-hydroxybenzoic acid, p-coumaric acid, and vanillic acid) in the rhizosphere soils of P. notoginseng, whose contents in the rhizosphere soils of healthy plants are higher than those of the diseased ones. Further we found that individual PA could inhibit the mycelium growth and spore production of F. oxysporum, but stimulate fusaric acid production as well, disclosing the double-edge sword role of PAs in the occurrence of root rot of P. notoginseng and paving the way for the intervention of P. notoginseng root rot via balancing PAs.


Asunto(s)
Hidroxibenzoatos/metabolismo , Panax notoginseng/microbiología , Panax notoginseng/fisiología , Raíces de Plantas/microbiología , Ácido Fusárico/metabolismo , Panax notoginseng/metabolismo , Rizosfera , Microbiología del Suelo
7.
Molecules ; 23(5)2018 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-29701709

RESUMEN

Replanting obstacles of Panax notoginseng caused by complex factors, including pathogens, have received great attention. In this study, essential oils (EOs) from either Alpinia officinarum Hance or Amomum tsao-ko (Zingiberaceae) were found to inhibit the growth of P. notoginseng-associated pathogenic fungi in vitro. Subsequent GC-MS analysis revealed the chemical profiles of two plant derived EOs. Linalool and eucalyptol were found to be abundant in the EOs and tested for their antifungal activities. In addition, the synergistic effects of A. tsao-ko EOs and hymexazol were also examined. These findings suggested that Zingiberaceae EOs might be a good source for developing new green natural pesticides fighting against root-rot of P. notoginseng.


Asunto(s)
Antifúngicos/farmacología , Aceites Volátiles/farmacología , Panax notoginseng/microbiología , Enfermedades de las Plantas/prevención & control , Zingiberaceae/química , Monoterpenos Acíclicos , Antifúngicos/química , Ciclohexanoles/aislamiento & purificación , Ciclohexanoles/farmacología , Sinergismo Farmacológico , Eucaliptol , Hongos/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Monoterpenos/aislamiento & purificación , Monoterpenos/farmacología , Aceites Volátiles/química , Oxazoles/farmacología , Panax notoginseng/efectos de los fármacos , Panax notoginseng/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Aceites de Plantas/química , Aceites de Plantas/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología
8.
Front Plant Sci ; 9: 1346, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30337932

RESUMEN

The root of Panax notoginseng (P. notoginseng) is one of the most highly valuable medicinal herbs in China owing to its pronounced hemostatic and restorative properties. Despite this important fact, growing P. notoginseng is seriously limited by root-rot diseases. In studies aimed at developing a solution to this problem, environment-friendly essential oils (EOs) of five medicinal plants of the family Zingiberaceae were tested for their inhibitory effects on the growth of three main soil pathogens associated with the root-rot diseases of P. notoginseng. The results showed that the EOs of Alpinia katsumadai Hayata and Zingiber officinale Roscoe promote significant reductions in the mycelium growth of the pathogen in vitro at a concentration of 50 mg mL-1, which is much higher than that needed (5 mg mL-1) to reduce growth by the positive control, flutriafol. Furthermore, the chemical components of the two EOs were determined by using GC-MS analysis. Eucalyptol was found to account for more than 30% of the oils of the two plants, with the second major components being geranyl acetate and α-terpineol. These substances display different degrees of fungistasis in vitro. To further determine the effects of the EO of Zingiber officinale (Z. officinale) in vivo, soilless cultivation of P. notoginseng with pathogen inoculation was conducted in a greenhouse. Addition of the petroleum ether extract (approximately equal to EO) of Z. officinale to the culture matrix causes a large decrease in both the occurrence and severity of the P. notoginseng root-rot disease. The decreasing trend of net photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) were all alleviated. In addition, the activities of catalase (CAT), peroxidase (POD), and the malondialdehyde (MDA) content were also largely reduced after pathogen infection, with the root activity being higher than that of the control. Taken together, the findings reveal that the EOs from plants might serve as promising sources of eco-friendly natural pesticides with less chemical resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA