Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 63(17): 7984-7991, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38622961

RESUMEN

The "cyan gap" is the bottleneck problem in violet-driven full-spectrum white-light-emitting diodes (wLEDs) in healthy lighting. Accordingly, we develop a novel broadband-blue-cyan emission Na3KMg7(PO4)6-x(BO3)x:Eu2+ (NKMPB:Eu2+) phosphor via crystal-site engineering. This phosphor is derived from the Na3KMg7(PO4)6:Eu2+ phosphor, which shows desired abundant cyan emissive components. A comparative study is conducted to reveal the microstructure-property relationship and the key influential factors to its spectrum distribution. It can be found that the introduced (BO3)3- units can manipulate the site-selective occupation of Eu2+ activators, asymmetrically broadening the emission spectrum in NKMPB:Eu2+. Considering detailed luminescence performance analysis and the density functional theory calculations, a new substitution pathway of Eu2+ is created by substituting (PO4)3- with (BO3)3- units, making partial Eu2+ ions enter the Mg2+ (CN = 5, CN = 6) crystallographic sites, and yielding an extra emission band at 600 nm (16667 cm-1) and especially 501 nm (19960 cm-1). Meanwhile, a high-color-quality full-spectrum-emitting wLEDs was fabricated, upon 100 mA forward-bias current driven. Due to the achieved extra cyan emissive components of NKMPB:Eu2+, the constructed NKMPB:Eu2+-based wLEDs show better color rendering ability (∼90.9) than that of Na3KMg7(PO4)6:Eu2+-based wLEDs (∼86.3), and also demonstrate its great potential in full-spectrum healthy lighting.

2.
J Med Virol ; 94(11): 5425-5433, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35770453

RESUMEN

New antiviral influenza treatments can effectively alleviate illness while reducing viral shedding. However, how such effects can translate into lower population infections of seasonal influenza in China remains unknown. To shed light on the public health impacts of novel antiviral agents for influenza, we constructed a dynamic transmission model to simulate the seasonal influenza epidemics in China. Two antivirus treatments, baloxavir and oseltamivir, were evaluated by estimating their impacts on the incidences of influenza infection in a single flu season. In the base-case analysis of a 10% antiviral treatment uptake rate, 2760 and 3420 per 10 000 persons contracted influenza under the treatment of baloxavir and oseltamivir, respectively. These incidence rates amounted to an 18.90% relative risk reduction (RRR) of infection associated with baloxavir in relation to oseltamivir. The corresponding RRR was 82.16% when the antiviral treatment uptake rate was increased to 35%. In addition, the peak of the prevalence of infected individuals per 10 000 persons under the baloxavir treatment was 177 (range: 93-274) fewer than that of oseltamivir. Our analyses suggest that the baloxavir treatment strategy reduces the incidence of influenza in China compared with oseltamivir in the setting of a seasonal flu epidemic. Also, increasing the uptake rate of antiviral treatment can potentially prevent millions of infections during a single flu season.


Asunto(s)
Gripe Humana , Tiepinas , Antivirales/farmacología , Antivirales/uso terapéutico , Dibenzotiepinas , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/epidemiología , Morfolinas , Oseltamivir/uso terapéutico , Oxazinas/uso terapéutico , Piridinas/farmacología , Piridonas , Estaciones del Año , Tiepinas/farmacología , Tiepinas/uso terapéutico , Triazinas
3.
Small ; 17(52): e2104551, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34729915

RESUMEN

Carbon dots (CDs) as one of the most promising carbon-based nanomaterials are inspiring extensive research in optoelectronic applications. White-light-emitting diodes (WLEDs) with tunable correlated color temperatures (CCTs) are crucial for applications in white lighting. However, the development of high-performance CDs-based electroluminescent WLEDs, especially those with adjustable CCTs, remains a challenge. Herein, white CDs-LEDs with CCTs from 2863 to 11 240 K are successfully demonstrated by utilizing aggregation-induced emission red-shifting and broadening of CDs. As a result, a series of warm white, pure white, and cold white CDs-LEDs are realized with adjustable emissions in sequence along the blackbody radiation curve. These CDs-LEDs reach maximum brightness and external quantum efficiency up to 1414-4917 cd m-2 and 0.08-0.87%, respectively, which is among the best performances of white CDs-LEDs. To the best of the authors' knowledge, this is the first time that CCT-tunable white electroluminescent CDs-LEDs are demonstrated through controlling the aggregation degrees of CDs.

4.
J Med Virol ; 93(2): 1171-1174, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32813283

RESUMEN

Several randomized clinical trials (RCTs) that investigated the effectiveness of remdesivir for the treatment of coronavirus disease-2019 (COVID-19) have generated inconsistent evidence. The present study aimed to synthesize available RCT evidence using network meta-analyses (NMAs). Both blinded and open-label RCTs in PubMed database from inception to 7 June 2020 that contained "remdesivir", "Covid-19", and "trial" in the abstracts conducted on hospitalized COVID-19 persons were identified and screened. The studies must have at least one remdesivir arm and evaluated one of the pre-specified outcomes. The outcomes were clinical improvement between days 10 to 15 after randomization and clinical recovery during the follow-up period. The identified literature was supplemented with relatively recent studies that were known to the researchers if not already included. Frequentist NMAs with random effects were conducted. Both 10-day and 5-day remdesivir regimens were associated with higher odds of clinical improvement (odds ratio [OR] of 10-day regimen: 1.35, 95% confidence interval [CI], 1.09-1.67); OR of 5-day regimen: 1.81, 95% CI, 1.32-2.45, and higher probabilities of clinical recovery (relative risk [RR] of 10-day regimen: 1.24, 95% CI, 1.07-1.43; RR of 5-day regimen: 1.47, 95% CI, 1.16-1.87 compared with placebo. Remdesivir may have clinical benefits among hospitalized COVID-19 persons.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Metaanálisis en Red , Adenosina Monofosfato/uso terapéutico , Alanina/uso terapéutico , Hospitalización/estadística & datos numéricos , Humanos , Resultado del Tratamiento
5.
Br J Clin Pharmacol ; 87(11): 4386-4396, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33855727

RESUMEN

AIMS: The present study aimed to evaluate the cost-effectiveness of the 5-day remdesivir regimen compared with standard of care among severe COVID-19 patients in China, the evidence on which is essential to inform the necessity of securing access to remdesivir. METHODS: A dynamic transmission model that extended the susceptible-exposed-infected-recovered framework by incorporating asymptomatic, presymptomatic and waiting-to-be-diagnosed patients was constructed to conduct the cost-effectiveness analysis from the healthcare system perspective. To estimate epidemic parameters, the model was first calibrated to the observed epidemic curve in Wuhan from 23 January to 19 March 2020. Following the calibration, the infected compartment was replaced by 3 severity-defined health states to reflect differential costs and quality of life associated with disease gravity. Costs and quality-adjusted life year (QALY) outcomes of 9 million simulated people were accrued across time to evaluate the incremental cost-effectiveness ratio of remdesivir. As robustness checks, an alternative modelling technique using decision tree, additional epidemic scenarios representing different epidemic intensities, and 1-way parameter variations were also analysed. RESULTS: Remdesivir treatment cost CN¥97.93 million more than standard of care. Also, the net QALY gain from 5-day remdesivir treatment was 6947 QALYs. As such, the incremental cost-effectiveness ratio was CN¥14 098/QALY, substantially lower than the gross domestic product per capita threshold. The peak daily number of severe cases was 19% lower in the remdesivir treatment strategy. Overall, results were robust in alternative scenarios and sensitivity analyses. CONCLUSION: Given the cost-effectiveness profile, access to remdesivir for severe COVID-19 patients in China should be considered.


Asunto(s)
Adenosina Monofosfato , Alanina , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19 , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/economía , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/economía , Alanina/uso terapéutico , Antivirales/economía , COVID-19/economía , China , Análisis Costo-Beneficio , Humanos , Calidad de Vida
6.
Small ; 16(19): e2000708, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32307877

RESUMEN

The development of luminescent materials with concurrent multimodal emissions is a great challenge to improve security and data storage density. Lanthanide-doped nanocrystals are particularly appropriate for such applications for their abundant intermediate energy states and distinguishable spectroscopic profiles. However, traditional lanthanide luminescent nanoparticles have a limited capacity for information storage or complexity to shield against counterfeiting. Herein, it is demonstrated that the combination of upconverting and downshifting emissions in a particulate designed lanthanide-doped core@multishell nanoarchitecture allows the generation of multicolor dual-modal luminescence over a wide spectral range for complex information storage. Precise control of lanthanide dopants distribution in the core and distinct shells enables simultaneous excitation of 980/808 nm focusing/defocusing laser and 254 nm light and produces complex upconverting emissions from Er, Tm, Eu, and Tb via multiphoton energy transfer processes and downshifting emissions from Eu and Tb via efficient energy transfer from Ce to Eu/Tb in Gd-assisted lattices. It is experimentally proven that multiple visualized anti-counterfeit and information encryption with facile decryption and authentication using screen-printing inks containing the present core@multishell nanocrystals are practically applicable by selecting different excitation modes.

7.
Small ; 14(23): e1800634, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29749012

RESUMEN

Cu nanowires (CuNWs) are considered as a promising candidate to develop high performance metal aerogels, yet the construction of robust and stable 3D porous structures remains challenging which severely limits their practical applications. Here, graphene-hybridized CuNW (CuNW@G) core-shell aerogels are fabricated by introducing a conformal polymeric coating and in situ transforming it into multilayered graphene seamlessly wrapped around individual CuNWs through a mild thermal annealing process. The existence of the outer graphene shell reinforces the 3D bulk structure and significantly slows down the oxidation process of CuNWs, resulting in improved mechanical property and highly stable electrical conductivity. When applied in electromagnetic interference shielding, the CuNW@G core-shell aerogels exhibit an average effectiveness of ≈52.5 dB over a wide range (from 8.2 to 18 GHz) with negligible degradation under ambient conditions for 40 d. Mechanism analysis reveals that the graphene shell with functional groups enables dual reflections on the core-shell and a multiple dielectric relaxation process, leading to enhanced dielectric loss and energy dissipation within the core-shell aerogels. The flexible core-shell-structured CuNW@G aerogels, with superior mechanical robustness and electrical stability, have potential applications in many areas such as advanced energy devices and functional composites.

8.
Inorg Chem ; 57(15): 8978-8987, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30035535

RESUMEN

Non-rare-earth Mn4+-doped double-perovskite (Ba1- xSr x)2YSbO6:Mn4+ red-emitting phosphors with adjustable photoluminescence are fabricated via traditional high-temperature sintering reaction. The structural evolution, variation of Mn4+ local environment, luminescent properties, and thermal quenching are studied systematically. With elevation of Sr2+ substituting content, the major diffraction peak moves up to a higher angle gradually. Impressively, with increasing the substitution of Ba2+ with Sr2+ cation from 0 to 100%, the emission band shifts to short-wavelength in a systematic way resulting from the higher transition energy from excited states to ground states. Besides, this blue-shift appearance can be illuminated adequately using the crystal field strength. The thermal quenching of the obtained solid solution is dramatically affected by the composition, with the PL intensity increasing 16% at 423 K going from x = 0 to 1.0. The w-LEDs component constructed by coupling the UV-LED chip with red/green/blue phosphors demonstrate an excellent correlated color temperature (CCT) of 3404 K, as well as color rendering index (CRI) of 86.8.

9.
Nanotechnology ; 29(39): 395601, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-29968569

RESUMEN

Recently, semiconducting chalcogenide nanostructures have attracted intense attention due to their excellent properties and broad applications, especially metal chalcogenides in the form of A2(V)B3(VI). Here we synthesized one-dimensional (1D) bismuth sulfide (Bi2S3) nanostructures with a length of more than 100 µm via a one-step hydrothermal method, and found that the reaction temperature and the alkali concentration play vital roles in the morphology of the 1D nanostructures. Since the as-synthesized Bi2S3 nanostructures were disordered in powder form, it is necessary to align them with ordered orientation and uniform distribution before further application. A blown bubble method was specifically applied to align these ultralong 1D nanostructures, and the assembly mechanism was also deeply analyzed, including the drift of nanostructures in the bubble film thickness direction, the relationship between (nanowire) NW spacing and array density, and the angle deviation of aligned arrays assembled from different bubble solutions. Interestingly, the initial straight Bi2S3 NWs could also be converted into buckled nanosprings (NSs) with regular pitches during the assembly process, and different NS formation stages were observed. A possible deformation mechanism or load bearing model of the wavy NS was proposed and verified, and the Young's modulus of an individual NW was figured out for the first time. After annealing under a N2 atmosphere, the aligned Bi2S3 NWs embedded in the bubble film were exposed, and the clean arrays were fabricated into functional optoelectronic devices such as photodetectors with a high performance.

10.
Chem Soc Rev ; 46(3): 603-631, 2017 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-27808300

RESUMEN

Solar H2 generation from water has been intensively investigated as a clean method to convert solar energy into hydrogen fuel. During the past few decades, many studies have demonstrated that metal complexes can act as efficient photoactive materials for photocatalytic H2 production. Here, we review the recent progress in the application of metal-complex chromophores to solar-to-H2 conversion, including metal-complex photosensitizers and supramolecular photocatalysts. A brief overview of the fundamental principles of photocatalytic H2 production is given. Then, different metal-complex photosensitizers and supramolecular photocatalysts are introduced in detail, and the most important factors that strictly determine their photocatalytic performance are also discussed. Finally, we illustrate some challenges and opportunities for future research in this promising area.

11.
Opt Lett ; 42(23): 4950-4953, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29216153

RESUMEN

Cr3+-doped Bi2Ga4O9-Bi2Al4O9 solid-solution (SS) phosphors were fabricated to explore their possible application in fluorescence lifetime-based temperature sensing. The present samples exhibited E2→A24 R-line emissions associated with T24→A24 phonon sideband emissions of Cr3+ in the wavelength range of 600-850 nm upon the excitation of visible light. Through modifying the Al/Ga ratio in the SS hosts, the Cr3+ crystal field was easily tuned from intermediate to strong, being beneficial to modulate an energy gap between E2 and T24 thermally coupled emitting states. As a result, linearly temperature-sensitive fluorescence lifetime was achieved in the Cr3+-doped Bi2Ga4O9-Bi2Al4O9 SSs with a high Al/Ga ratio, enabling us to conveniently and accurately determine a temperature with a high relative sensitivity of 2.13-3.26% K-1.

12.
Anal Chem ; 88(7): 4099-106, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26937775

RESUMEN

A strategy to achieve high sensitivity of noncontact optical thermometer via the structure design of nanoglass-ceramic and the usage of Ln(3+) (Ln = Eu, Tb, Dy) luminescence as reference signal and Cr(3+) emission as temperature signal was provided. Specifically, the synthesized dual-phase glass-ceramics were evidenced to enable spatially confined doping of Ln(3+) in the hexagonal GdF3 nanocrystals and Cr(3+) in the cubic Ga2O3 nanoparticles, being beneficial to suppressing detrimental energy transfer between Ln(3+) and Cr(3+) and thus significantly enhancing their luminescence. As a consequence, completely different temperature-sensitive luminescence of Ln(3+)4f → 4f transition and Cr(3+) 3d → 3d transition in the present glass-ceramic resulted in obvious variation of Cr(3+)/Ln(3+) fluorescence intensity ratio with temperature and strikingly high detecting temperature sensitivity of 15-22% per K. We believe that this preliminary study will provide an important advance in exploring other innovative optical thermometry.

13.
Opt Lett ; 40(15): 3607-10, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26258369

RESUMEN

Transparent bulk glass ceramic containing Cr3+:LiGa5O8 nanoparticles was fabricated as an alternative for monocrystal to explore the possible application in fluorescence lifetime-based temperature sensing. Such glass ceramic exhibited deep-red luminescence upon the excitation of the wide wavelength range of visible light. Impressively, the Cr3+ lifetime dramatically decreased from 2.45 to 0.22 ms with the temperature increasing from 293 to 563 K, owing to the competition of radiation transitions from the thermally coupled 2E and 4T2 excited states. A two-level kinetic model was adopted to interpret this temperature-dependent luminescence of Cr3+, which gave a highest temperature sensitivity of 1.15% K(-1).

14.
Chemphyschem ; 16(18): 3784-9, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26436998

RESUMEN

Conventional luminescent color coding is limited by spectral overlap and the interference of background fluorescence, thus restricting the number of distinguishable identities that can be used in practice. Here, we demonstrate the possibility of generating diverse time-domain codes, specially designed for a single emission band, using lanthanide-doped upconversion nanocrystals. Based on the knowledge of concentration quenching, the upconversion luminescence kinetics of KYb2 F7 : Ho(3+) nanocrystals can be precisely controlled by modifying the dopant concentration of Ho(3+) ions, resulting in a tunable emission lifetime from 75.8 to 1944.5 µs, which suggests the practicality of these time-domain codes for optical multiplexing.


Asunto(s)
Holmio/química , Nanopartículas , Análisis Espectral/métodos , Microscopía Electrónica de Transmisión
15.
Phys Chem Chem Phys ; 17(11): 7100-3, 2015 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-25697224

RESUMEN

K(Y1-xYbx)3F10 (x = 0-1) solid-solution nanocrystals embedded glass ceramics were fabricated via glass self-crystallization. Using Eu(3+) as a structural probe, the partition of lanthanide activators into the K(Y1-xYbx)3F10 lattice was evidenced. As a consequence, color-tunable upconversion luminescence from green to red was easily realized by modifying Yb(3+) content in the Er(3+)-doped nano-glass-ceramics.

16.
Inorg Chem ; 53(16): 8638-45, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25068770

RESUMEN

Currently, upconversion nanocrystals and long-lasting phosphorescent particles have attracted extensive research interest for their possible applications as bioimaging probes. However, there are few reports concerning the achievement of both upconversion luminescence of lanthanide ions and long-lasting phosphorescence of transition metal ions in a sole host so far. Herein, we demonstrate a novel calcium gallium germanium garnet (Ca3Ga2Ge3O12) host where lanthanide ions such as Tm(3+)/Yb(3+) and transition metal ions such as Cr(3+) can be easily incorporated through substituting the Ca(2+) and Ga(3+) respectively. This Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor exhibits both broadband near-infrared long-lasting phosphorescence of Cr(3+) with an afterglow time of more than 7000 s and near-infrared to near-infrared upconversion luminescence of Tm(3+). Impressively, it is evidenced that the addition of Yb(3+)/Tm(3+) into Cr:Ca3Ga2Ge3O12 not only results in Tm(3+) upconversion luminescence but also greatly increases Cr(3+) afterglow time. Based on excitation/emission, three-dimensional thermoluminescence, and time-resolved luminescence spectra, the related long-lasting phosphorescence and upconversion luminescent mechanisms are systematically discussed as well.


Asunto(s)
Calcio/química , Cromo/química , Galio/química , Germanio/química , Elementos de la Serie de los Lantanoides/química , Oxígeno/química , Luminiscencia , Mediciones Luminiscentes
17.
Adv Mater ; 36(4): e2308487, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37918976

RESUMEN

Lead-free double perovskites (DPs) are emerging highly stable emitters with efficient broadband self-trapped exciton (STE) photoluminescence (PL), but their low electroluminescent (EL) efficiency is a critical shortcoming. This work promotes the external quantum efficiency (EQE) and luminance of DP-based white light-emitting diode (wLED) with a normal device structure to 0.76% and 2793 cd m-2 via two modifications: This work prevents the formation of adverse metallic silver, spatially confined STE, and lowers local site symmetry in Cs2 Na0.4 Ag0.6 In0.97 Bi0.03 Cl6 DP by terbium doping; and this work develops a guest-host strategy to improve film morphology, reduce defect density, and increase carrier mobility. These alterations cause substantial increase in STE radiative recombination and charge injection efficiency of perovskite layer. Finally, pure white EL with ideal color coordinates of (0.328, 0.329) and a record-breaking optoelectronic performance is achieved by introducing additional green carbon dots in LED to fill the deficient green component.

18.
Adv Sci (Weinh) ; : e2404485, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872266

RESUMEN

White light-emitting diodes (WLEDs) with high color-rendering index (CRI, >90) are important for backlight displays and solid-state lighting applications. Although the well-developed colloidal quantum dots (QDs) based on heavy metals such as cadmium and lead are promising candidates for WLEDs, the low CRI still remains a significant limitation. In addition, the severe toxicity of heavy metals greatly limits their widespread use. Herein, the study demonstrates low-cost and environmentally friendly carbon quantum dots (CQDs)-based WLEDs that exhibit a high CRI of 94.33, surpassing that of conventional cadmium/lead-containing QD-based WLEDs. This achievement is attained through the employment of a binary host-induced exciplex strategy. The high hole/electron mobility and suitable energy levels of the donor and acceptor give rise to a broadband orange-yellow emission stemming from the exciplex. As the host, the binary exciplex is capable of contributing blue and orange-yellow emission components while efficiently mitigating the aggregation-induced quenching of CQDs. Meanwhile, CQDs effectively address the deep-red emission gap, enabling the realization of CQDs-based WLEDs with high CRI. These WLEDs also exhibit a remarkably low turn-on voltage of 2.8 V, a maximum luminance exceeding 2000 cd m- 2, a correlated color temperature of 4976 K, and Commission Internationale de l'Eclairage coordinates of (0.34, 0.32).

19.
Adv Mater ; : e2406147, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38925142

RESUMEN

High-brightness laser lighting is confronted with crucial challenges in developing laser-excitable color converting materials with effective heat dissipation and super optical performance. Herein, a novel composite of phosphor-in-glass film on transparent diamond (PiGF@diamond) is designed and fabricated via a facile low-temperature co-sintering strategy. The as-prepared La3Si6N11:Ce3+ (LSN:Ce) PiGF@diamond with well-retained optical properties of raw phosphor shows a record thermal conductivity of ≈599 W m-1 K-1, which is about 60 times higher than that of currently well-used PiGF@sapphire (≈10 W m-1 K-1). As a consequence, this color converter can bear laser power density up to 40.24 W mm-2 and a maximum luminance flux of 5602 lm without luminescence saturation due to efficient inhibition of laser-induced heat accumulation. By further supplementing red spectral component of CaAlSiN3:Eu2+ (CASN:Eu), the PiGF@diamond based white laser diode is successfully constructed, which can yield warm white light with a high color rendering index of 89.3 and find practical LD-driven applications. The findings will pave the way for realizing the commercial application of PiGF composite in laser lighting and display.

20.
Nanotechnology ; 24(8): 085708, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23386131

RESUMEN

A series of Er(3+)-doped (1 - x)CaF(2)-xYbF(3) (0 ≤ x ≤ 0.6) disordered solid-solution nanocrystals with various mean sizes were successfully prepared by a facile solvothermal route. Interestingly, abnormal size-dependent upconversion emissions were demonstrated in these nanocrystals for the first time. With increasing grain size, an obvious enhancement of red to green emission ratio was observed in the Er(3+) (2 mol%): 0.4CaF(2)-0.6YbF(3) nanocrystals, which is the opposite of the routine size-dependent upconversion emission behavior reported previously. Taking Eu(3+) ions as a structural probe, we investigated the influence of a disordered solid-solution structure on Ln(3+) luminescence, and proposed that Ln(3+) clusters formed in the host should play a key role to induce this unusual size-dependent upconversion emission phenomenon. As a consequence, multi-colors such as green, yellow, and red upconversion emissions can be easily realized by appropriately modifying the Yb(3+) content in the Er(3+)-doped (1 - x)CaF(2)-xYbF(3) nanocrystals. The reported results will deepen the understanding of size effects on the lanthanide upconversion in nanocrystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA