Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neuroinflammation ; 21(1): 70, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515139

RESUMEN

Myeloperoxidase (MPO) plays critical role in the pathology of cerebral ischemia-reperfusion (I/R) injury via producing hypochlorous acid (HOCl) and inducing oxidative modification of proteins. High-mobility group box 1 (HMGB1) oxidation, particularly disulfide HMGB1 formation, facilitates the secretion and release of HMGB1 and activates neuroinflammation, aggravating cerebral I/R injury. However, the cellular sources of MPO/HOCl in ischemic brain injury are unclear yet. Whether HOCl could promote HMGB1 secretion and release remains unknown. In the present study, we investigated the roles of microglia-derived MPO/HOCl in mediating HMGB1 translocation and secretion, and aggravating the brain damage and blood-brain barrier (BBB) disruption in cerebral I/R injury. In vitro, under the co-culture conditions with microglia BV cells but not the single culture conditions, oxygen-glucose deprivation/reoxygenation (OGD/R) significantly increased MPO/HOCl expression in PC12 cells. After the cells were exposed to OGD/R, MPO-containing exosomes derived from BV2 cells were released and transferred to PC12 cells, increasing MPO/HOCl in the PC12 cells. The HOCl promoted disulfide HMGB1 translocation and secretion and aggravated OGD/R-induced apoptosis. In vivo, SD rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) plus different periods of reperfusion. Increased MPO/HOCl production was observed at the reperfusion stage, accomplished with enlarged infarct volume, aggravated BBB disruption and neurological dysfunctions. Treatment of MPO inhibitor 4-aminobenzoic acid hydrazide (4-ABAH) and HOCl scavenger taurine reversed those changes. HOCl was colocalized with cytoplasm transferred HMGB1, which was blocked by taurine in rat I/R-injured brain. We finally performed a clinical investigation and found that plasma HOCl concentration was positively correlated with infarct volume and neurological deficit scores in ischemic stroke patients. Taken together, we conclude that ischemia/hypoxia could activate microglia to release MPO-containing exosomes that transfer MPO to adjacent cells for HOCl production; Subsequently, the production of HOCl could mediate the translocation and secretion of disulfide HMGB1 that aggravates cerebral I/R injury. Furthermore, plasma HOCl level could be a novel biomarker for indexing brain damage in ischemic stroke patients.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Proteína HMGB1 , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Humanos , Ratas , Animales , Ácido Hipocloroso , Microglía/metabolismo , Proteína HMGB1/metabolismo , Ratas Sprague-Dawley , Lesiones Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Barrera Hematoencefálica/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/patología , Neuronas/metabolismo , Daño por Reperfusión/metabolismo , Peroxidasa/metabolismo , Taurina , Disulfuros
2.
BMC Bioinformatics ; 23(1): 294, 2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35870880

RESUMEN

BACKGROUND: Over the past few decades, the emergence and maturation of new technologies have substantially reduced the cost of genome sequencing. As a result, the amount of genomic data that needs to be stored and transmitted has grown exponentially. For the standard sequencing data format, FASTQ, compression of the quality score is a key and difficult aspect of FASTQ file compression. Throughout the literature, we found that the majority of the current quality score compression methods do not support random access. Based on the above consideration, it is reasonable to investigate a lossless quality score compressor with a high compression rate, a fast compression and decompression speed, and support for random access. RESULTS: In this paper, we propose CMIC, an adaptive and random access supported compressor for lossless compression of quality score sequences. CMIC is an acronym of the four steps (classification, mapping, indexing and compression) in the paper. Its framework consists of the following four parts: classification, mapping, indexing, and compression. The experimental results show that our compressor has good performance in terms of compression rates on all the tested datasets. The file sizes are reduced by up to 21.91% when compared with LCQS. In terms of compression speed, CMIC is better than all other compressors on most of the tested cases. In terms of random access speed, the CMIC is faster than the LCQS, which provides a random access function for compressed quality scores. CONCLUSIONS: CMIC is a compressor that is especially designed for quality score sequences, which has good performance in terms of compression rate, compression speed, decompression speed, and random access speed. The CMIC can be obtained in the following way: https://github.com/Humonex/Cmic .


Asunto(s)
Compresión de Datos , Secuenciación de Nucleótidos de Alto Rendimiento , Algoritmos , Compresión de Datos/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Programas Informáticos
3.
Pharmacol Res ; 158: 104877, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32407958

RESUMEN

Oxidative/nitrosative stress and neuroinflammation are critical pathological processes in cerebral ischemia-reperfusion injury, and their intimate interactions mediate neuronal damage, blood-brain barrier (BBB) damage and hemorrhagic transformation (HT) during ischemic stroke. We review current progress towards understanding the interactions of oxidative/nitrosative stress and inflammatory responses in ischemic brain injury. The interactions between reactive oxygen species (ROS)/reactive nitrogen species (RNS) and innate immune receptors such as TLR2/4, NOD-like receptor, RAGE, and scavenger receptors are crucial pathological mechanisms that amplify brain damage during cerebral ischemic injury. Furthermore, we review the current progress of omics and systematic biology approaches for studying complex network regulations related to oxidative/nitrosative stress and inflammation in the pathology of ischemic stroke. Targeting oxidative/nitrosative stress and neuroinflammation could be a promising therapeutic strategy for ischemic stroke treatment. We then review recent advances in discovering compounds from medicinal herbs with the bioactivities of simultaneously regulating oxidative/nitrosative stress and pro-inflammatory molecules for minimizing ischemic brain injury. These compounds include sesamin, baicalin, salvianolic acid A, 6-paradol, silymarin, apocynin, 3H-1,2-Dithiole-3-thione, (-)-epicatechin, rutin, Dl-3-N-butylphthalide, and naringin. We finally summarize recent developments of the omics and systematic biology approaches for exploring the molecular mechanisms and active compounds of Traditional Chinese Medicine (TCM) formulae with the properties of antioxidant and anti-inflammation for neuroprotection. The comprehensive omics and systematic biology approaches provide powerful tools for exploring therapeutic principles of TCM formulae and developing precision medicine for stroke treatment.


Asunto(s)
Productos Biológicos/administración & dosificación , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Metabolómica/tendencias , Estrés Nitrosativo/fisiología , Estrés Oxidativo/fisiología , Proteómica/tendencias , Animales , Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Metabolómica/métodos , Estrés Nitrosativo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteómica/métodos , Especies de Nitrógeno Reactivo/antagonistas & inhibidores , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Resultado del Tratamiento
4.
Angew Chem Int Ed Engl ; 59(34): 14326-14330, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32472602

RESUMEN

Selective and sensitive molecular probes for hydrogen peroxide (H2 O2 ), which plays diverse roles in oxidative stress and redox signaling, are urgently needed to investigate the physiological and pathological effects of H2 O2 . A lack of reliable tools for in vivo imaging has hampered the development of H2 O2 mediated therapeutics. By combining a specific tandem Payne/Dakin reaction with a chemiluminescent scaffold, H2 O2 -CL-510 was developed as a highly selective and sensitive probe for detection of H2 O2 both in vitro and in vivo. A rapid 430-fold enhancement of chemiluminescence was triggered directly by H2 O2 without any laser excitation. Arsenic trioxide induced oxidative damage in leukemia was successfully detected. In particular, cerebral ischemia-reperfusion injury-induced H2 O2 fluxes were visualized in rat brains using H2 O2 -CL-510, providing a new chemical tool for real-time monitoring of H2 O2 dynamics in living animals.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Luminiscencia , Sondas Moleculares/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Límite de Detección , Sondas Moleculares/química , Ratas , Bibliotecas de Moléculas Pequeñas/metabolismo , Células THP-1
5.
Acta Pharmacol Sin ; 39(5): 669-682, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29595191

RESUMEN

Reactive nitrogen species (RNS) play important roles in mediating cerebral ischemia-reperfusion injury. RNS activate multiple signaling pathways and participate in different cellular events in cerebral ischemia-reperfusion injury. Recent studies have indicated that caveolin-1 and matrix metalloproteinase (MMP) are important signaling molecules in the pathological process of ischemic brain injury. During cerebral ischemia-reperfusion, the production of nitric oxide (NO) and peroxynitrite (ONOO-), two representative RNS, down-regulates the expression of caveolin-1 (Cav-1) and, in turn, further activates nitric oxide synthase (NOS) to promote RNS generation. The increased RNS further induce MMP activation and mediate disruption of the blood-brain barrier (BBB), aggravating the brain damage in cerebral ischemia-reperfusion injury. Therefore, the feedback interaction among RNS/Cav-1/MMPs provides an amplified mechanism for aggravating ischemic brain damage during cerebral ischemia-reperfusion injury. Targeting the RNS/Cav-1/MMP pathway could be a promising therapeutic strategy for protecting against cerebral ischemia-reperfusion injury. In this mini-review article, we highlight the important role of the RNS/Cav-1/MMP signaling cascades in ischemic stroke injury and review the current progress of studies seeking therapeutic compounds targeting the RNS/Cav-1/MMP signaling cascades to attenuate cerebral ischemia-reperfusion injury. Several representative natural compounds, including calycosin-7-O-ß-D-glucoside, baicalin, Momordica charantia polysaccharide (MCP), chlorogenic acid, lutein and lycopene, have shown potential for targeting the RNS/Cav-1/MMP signaling pathway to protect the brain in ischemic stroke. Therefore, the RNS/Cav-1/MMP pathway is an important therapeutic target in ischemic stroke treatment.


Asunto(s)
Isquemia Encefálica/prevención & control , Fármacos Neuroprotectores/uso terapéutico , Daño por Reperfusión/prevención & control , Transducción de Señal/efectos de los fármacos , Accidente Cerebrovascular/prevención & control , Animales , Isquemia Encefálica/fisiopatología , Caveolina 1/metabolismo , Caveolina 1/fisiología , Humanos , Metaloproteinasas de la Matriz/metabolismo , Metaloproteinasas de la Matriz/fisiología , Momordica charantia/química , Especies de Nitrógeno Reactivo/metabolismo , Especies de Nitrógeno Reactivo/fisiología , Accidente Cerebrovascular/fisiopatología
6.
J Neurosci ; 36(19): 5193-9, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27170118

RESUMEN

UNLABELLED: Multiple sclerosis (MS) is a progressive autoimmune disease of the CNS with its underlying mechanisms not fully understood. In the present study, we tested the hypothesis that caveolin-1, a major membrane scaffolding protein, plays a critical role in the pathogenesis of experimental autoimmune encephalomyelitis, a laboratory murine model of MS. We found increased expression of caveolin-1 in serum and spinal cord tissues in association with disease incidence and severity in wild-type mice with active encephalomyelitis. After immunization, Cav-1 knock-out mice showed remarkable disease resistance with decreased incidence and clinical symptoms. Furthermore, Cav-1 knock-out mice had alleviated encephalitogenic T cells trafficking into the CNS with decreased expressions of adhesion molecules ICAM-1 and VCAM-1 within the lesions. In agreement with in vivo studies, in vitro knockdown of caveolin-1 compromised the upregulation of ICAM-1 in endothelial cells, leading to the amelioration of the transendothelial migration of pathogenic TH1 and TH17 cells. Together, those results indicate that caveolin-1 serves as an active modulator of CNS-directed lymphocyte trafficking and could be a therapeutic target for neuroinflammatory diseases, such as multiple sclerosis. SIGNIFICANCE STATEMENT: The hallmark feature of neuroinflammatory diseases is the massive infiltrations of encephalitogenic leukocytes into the CNS parenchyma, a process that remains largely unclear. Our study demonstrates the critical contribution of caveolin-1 to encephalomyelitis pathogenesis and CNS-directed lymphocyte trafficking by modulation of adhesion molecules ICAM-1 and VCAM-1, highlighting the pathological involvement of caveolin-1 in neuroinflammatory diseases.


Asunto(s)
Caveolina 1/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Médula Espinal/metabolismo , Linfocitos T/fisiología , Migración Transendotelial y Transepitelial , Animales , Caveolina 1/genética , Células Cultivadas , Encefalomielitis Autoinmune Experimental/genética , Femenino , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
7.
Medicine (Baltimore) ; 103(24): e38533, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875394

RESUMEN

Physical examination data are used to indicate individual health status and organ health, and understanding which physical examination data are indicative of physiological aging is critical for health management and early intervention. There is a lack of research on physical examination data and telomere length. Therefore, the present study analyzed the association between blood telomere length and physical examination indices in healthy people of different ages to investigate the role and association of various organs/systems with physiological aging in the human body. The present study was a cross-sectional study. Sixteen physical examination indicators of different tissue and organ health status were selected and analyzed for trends in relation to actual age and telomere length (TL). The study included 632 individuals with a total of 11,766 data for 16 physical examination indicators. Age was linearly correlated with 11 indicators. Interestingly, telomere length was strongly correlated only with the renal indicators eGFR (P < .001), CYS-C (P < .001), and SCR (P < .001). The study established that renal aging or injury is a risk factor for Physical aging of the human body. Early identification and management are essential to healthcare.


Asunto(s)
Envejecimiento , Biomarcadores , Telómero , Humanos , Estudios Transversales , Masculino , Femenino , Persona de Mediana Edad , Envejecimiento/genética , Envejecimiento/fisiología , Adulto , Anciano , Biomarcadores/sangre , Adulto Joven , Examen Físico/métodos , Anciano de 80 o más Años , Estado de Salud , Indicadores de Salud
8.
CNS Neurosci Ther ; 30(7): e14849, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39075660

RESUMEN

BACKGROUND: Angong Niuhuang Wan (AGNHW, ), is a classical medicinal formula in Traditional Chinese Medicine (TCM) that has been appreciated for its neuroprotective properties in ischemic cerebral injuries, yet its intricate mechanisms remain only partially elucidated. AIMS: This study leverages advanced Mass cytometry (CyTOF) to analyze AGNHW's multifaceted immunomodulation effects in-depth, emphasizing previously underexplored areas. RESULTS: AGNHW mitigated monocyte-derived macrophages (MoDM) infiltration in the brain, distinguishing its effects on those from microglia. While the vehicle group exhibited elevated inflammatory markers like CD4, CD8a, and CD44 in ischemic brains, the AGNHW-treated group attenuated their expressions, indicating AGNHW's potential to temper the post-ischemic inflammatory response. Systemically, AGNHW modulated fundamental immune cell dynamics, notably augmenting CD8+ T cells, B cells, monocytes, and neutrophil counts in the peripheral blood under post-stroke conditions. Intracellularly, AGNHW exhibited its targeted modulation of the signaling pathways, revealing a remarked inhibition of key markers like IκBα, indicating potential suppression of inflammatory responses in ischemic brain injuries. CONCLUSION: This study offers a comprehensive portrait of AGNHW's immunomodulation effects on ischemic stroke, illuminating its dual sites of action-both cerebral and systemic-and its nuanced modulation of cellular and molecular dynamics.


Asunto(s)
Medicamentos Herbarios Chinos , Accidente Cerebrovascular Isquémico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Accidente Cerebrovascular Isquémico/inmunología , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Citometría de Flujo/métodos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo
9.
Acta Pharmacol Sin ; 34(1): 67-77, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22842734

RESUMEN

Ischemic stroke accounts for nearly 80% of stroke cases. Recanalization with thrombolysis is a currently crucial therapeutic strategy for re-building blood supply, but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury, which are mediated by free radicals. As an important component of free radicals, reactive nitrogen species (RNS), including nitric oxide (NO) and peroxynitrite (ONOO(-)), play important roles in the process of cerebral ischemia-reperfusion injury. Ischemia-reperfusion results in the production of nitric oxide (NO) and peroxynitrite (ONOO(-)) in ischemic brain, which trigger numerous molecular cascades and lead to disruption of the blood brain barrier and exacerbate brain damage. There are few therapeutic strategies available for saving ischemic brains and preventing the subsequent brain damage. Recent evidence suggests that RNS could be a therapeutic target for the treatment of cerebral ischemia-reperfusion injury. Herein, we reviewed the recent progress regarding the roles of RNS in the process of cerebral ischemic-reperfusion injury and discussed the potentials of drug development that target NO and ONOO(-) to treat ischemic stroke. We conclude that modulation for RNS level could be an important therapeutic strategy for preventing cerebral ischemia-reperfusion injury.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Encéfalo/irrigación sanguínea , Encéfalo/patología , Descubrimiento de Drogas/métodos , Terapia Molecular Dirigida/métodos , Especies de Nitrógeno Reactivo/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Humanos
10.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-38004382

RESUMEN

Stroke is the second leading cause of death and the third leading cause of disability worldwide, with limited treatment options [...].

11.
Mar Pollut Bull ; 188: 114680, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36746038

RESUMEN

Macro-algae culture has recently attracted attention in China because of its capability to sequester carbon. Here, radionuclides, total organic carbon (TOC), and nitrogen (TN) were examined in a cultivation area of macro-algae in Southeast China. At the reference site, the ratio of TOC to TN (C/N, 8.1 ± 0.2, mean ± SD) did not exhibit discernible variation over the past 70 years. In contrast, in the cultivation area, C/N descended from 9.0 ± 0.2 around 1960 to 8.3 ± 0.2 between 1960 and 1990 and 7.6 ± 0.2 after 1990, coincident with the recorded kelp production in this area, indicating an influence of macro-algae culture-associated activities on carbon origin. Using a model, algal culture-associated activities contributed 23 ± 7 % between 1963 and 1990 and 53 ± 8 % between 1990 and 2022 to TOC. The burial of culture-associated TOC varied from 0.15 to 1.23 mg-C cm-2 yr-1, implying the unneglectable influence on carbon storage.


Asunto(s)
Carbono , Sedimentos Geológicos , Carbono/análisis , Monitoreo del Ambiente , Nitrógeno/análisis , China
12.
Chin Med ; 17(1): 51, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477576

RESUMEN

BACKGROUND: Hemorrhagic transformation (HT) is a common complication of delayed tissue plasminogen activator (t-PA) treatment for ischemic stroke. Peroxynitrite plays an important role in the breakdown of blood-brain barrier (BBB) and the development of HT. We tested the hypothesis that Angong Niuhuang Wan (AGNHW), a traditional Chinese medicinal formula, could be used in conjunction with t-PA to protect the BBB, minimize HT, and improve neurological function by suppressing peroxynitrite-mediated matrix metalloproteinase-9 (MMP-9) activation. METHODS: We first performed quality control study and chemical identification of AGNHW by using UPLC. In animal experiments, male Sprague-Dawley rats were subjected to 5 h of middle cerebral artery occlusion (MCAO) followed by 19 h of reperfusion plus t-PA infusion (10 mg/kg) at 5 h of cerebral ischemia. AGNHW (257 mg/kg) was given orally at 2 h after MCAO. Hemorrhagic transformation was measured using hemorrhagic scores and hemoglobin levels in ischemic brains. Evans blue leakage was utilized to assess the severity of the blood-brain barrier (BBB) damage. The modified neurologic severity score (mNSS) test was used to assess neurological functions. Peroxynitrite and superoxide was detected by using fluorescent probes. MMP-9 activity and expression were examined by gelatin zymography and immunostaining. The antioxidant effects were also studied by using brain microvascular endothelial b.End3 cells exposed to 5 h of oxygen and glucose deprivation (OGD) plus 5 h of reoxygenation with t-PA treatment (20 µg/ml). RESULTS: AGNHW significantly reduced the BBB damage, brain edema, reduced hemorrhagic transformation, enhanced neurological function, and reduced mortality rate in the ischemic stroke rats with t-PA treatment. AGNHW reduced peroxynitrite and superoxide in vivo and in vitro and six active chemical compounds were identified from AGNHW with peroxynitrite scavenging activity. Furthermore, AGNHW inhibited MMP-9 activity, and preserved tight junction protein claudin-5 and collagen IV in the ischemic brains. CONCLUSION: AGNHW could be a potential adjuvant therapy with t-PA to protect the BBB integrity, reduce HT, and improve therapeutic outcome in ischemic stroke treatment via inhibiting peroxynitrite-mediated MMP-9 activation.

13.
Front Pharmacol ; 12: 653795, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935765

RESUMEN

Danggui-Shayao-San (DSS) is a famous Traditional Chinese Medicine formula that used for treating pain disorders and maintaining neurological health. Recent studies indicate that DSS has neuroprotective effects against ischemic brain damage but its underlining mechanisms remain unclear. Herein, we investigated the neuroprotective mechanisms of DSS for treating ischemic stroke. Adult male Sprague-Dawley (S.D.) rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) plus 22 h of reperfusion. Both ethanol extract and aqueous extract of DSS (12 g/kg) were orally administrated into the rats at 30 min prior to MCAO ischemic onset. We found that 1) ethanol extract of DSS, instead of aqueous extract, reduced infarct sizes and improved neurological deficit scores in the post-ischemic stroke rats; 2) Ethanol extract of DSS down-regulated the expression of the cleaved-caspase 3 and Bax, up-regulated bcl-2 and attenuated apoptotic cell death in the ischemic brains; 3) Ethanol extract of DSS decreased the production of superoxide and peroxynitrite; 4) Ethanol extract of DSS significantly down-regulated the expression of p67phox but has no effect on p47phox and iNOS statistically. 5) Ethanol extract of DSS significantly up-regulated the expression of SIRT1 in the cortex and striatum of the post-ischemic brains; 6) Co-treatment of EX527, a SIRT1 inhibitor, abolished the DSS's neuroprotective effects. Taken together, DSS could attenuate oxidative/nitrosative stress and inhibit neuronal apoptosis against cerebral ischemic-reperfusion injury via SIRT1-dependent manner.

14.
Free Radic Biol Med ; 165: 171-183, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33515754

RESUMEN

This study aims to test the hypothesis that peroxynitrite-mediated inflammasome activation could be a crucial player in the blood-brain barrier (BBB) disruption, hemorrhagic transformation (HT) and poor outcome in ischemic stroke with hyperglycemia. We used an experimental rat stroke model subjected to 90 min of middle cerebral artery occlusion plus 24 h or 7 days of reperfusion with or without acute hyperglycemia. We detected the production of peroxynitrite, the expression of NADPH oxidase, iNOS, MMPs and NLRP3 inflammasome in the ischemic brains, and evaluated infarct volume, brain edema, HT, neurological deficit score and survival rates. Our results show that: (1) Hyperglycemia increased the expression of NADPH oxidase subunits p47phox and p67phox, and iNOS, and the production of peroxynitrite. (2) Hyperglycemia increased infarct volume, aggravated the BBB hyperpermeability, induced brain edema and HT, and worsened neurological outcomes. These brain damages and poor outcome were reversed by the treatments of FeTmPyP (a representative peroxynitrite decomposition catalyst, PDC), peroxynitrite scavenger uric acid, and iNOS inhibitor 1400W. Furthermore, the activations of MMPs and NLRP3 inflammasome including pro/active-caspase-1 and IL-1ß were inhibited both PDC and 1400W, indicating the roles of peroxynitrite in the inductions of MMPs and NLRP3 inflammasome in the ischemic brains under hyperglycemia. (3) NLRP3 inflammasome inhibitor MCC950, caspase-1 inhibitor VX-765 and IL-1ß inhibitor diacerein attenuated brain edema, minimized hemorrhagic transformation and improved neurological outcome, demonstrating the roles of NLRP3 inflammasome in the hyperglycemia-mediated HT and poor outcome in the ischemic stroke rats with acute hyperglycemia. In conclusion, peroxynitrite could mediate activations of MMPs and NLRP3 inflammasome, aggravate the BBB damage and HT, and induce poor outcome in ischemic stroke with hyperglycemia. Therefore, targeting peroxynitrite-mediated NLRP3 inflammasome could be a promising strategy for ischemic stroke with hyperglycemia.


Asunto(s)
Isquemia Encefálica , Hiperglucemia , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Ácido Peroxinitroso , Ratas
15.
Free Radic Biol Med ; 173: 41-51, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34271106

RESUMEN

Reactive oxygen species (ROS)/reactive nitrogen species (RNS)-mediated ferroptosis becomes a novel effective target for anti-cancer treatment. In the present study, we tested the hypothesis that 18-ß-glycyrrhetinic acid (GA), an active compound from medicinal herbal Licorice, could induce the production of ROS/RNS, increase lipid peroxidation and trigger ferroptosis in MDA-MB-231 triple negative breast cancer cells. To confirm the GA's anti-cancer effects, we detected cell viability, apoptosis and ferroptosis in the MDA-MB-231 cells. To explore the effects of GA on inducing ferroptosis, we measured mitochrondrial morphology, ROS/RNS production, lipid peroxidation, ferrous ion, glutathione (GSH), System Xc-, GPX4, glutathione peroxidases (GPX), NADPH oxidase and iNOS in the MDA-MB-231 cells. The major discoveries are included as below: (1) GA treatment selectively decreased cell viability and induced ferroptosis companied with the increased lipid peroxidation and ferrous ion in the MDA-MB-231 triple negative breast cancer cells. Iron chelator deferoxamine mesylate (DFO) and ferroptosis inhibitor Ferrostatin-1 abolished the effects of GA. (2) GA treatment up-regulated the expression and activity of NADPH oxidase and iNOS, and increased ROS/RNS productions (O2•-, •OH, NO and ONOO-) in the MDA-MB-231 cells; (3) GA down-regulated the expression of SLC7A11 of System Xc-, decreased glutathione (GSH) level and inhibited GPX activity. Taken together, GA could promote the productions of ROS and RNS via activating NADPH oxidases and iNOS, and decreasing GSH and GPX activity, subsequently aggravating lipid peroxidation and triggering ferroptosis in triple-negative breast cancer cells.


Asunto(s)
Ferroptosis , Ácido Glicirretínico , Neoplasias de la Mama Triple Negativas , Glutatión/metabolismo , Humanos , Peroxidación de Lípido , NADPH Oxidasas , Estrés Oxidativo , Especies Reactivas de Oxígeno , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética
16.
Brain Res Bull ; 170: 254-263, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33647420

RESUMEN

The deacetylase SIRT1 has been reported to play a critical role in regulating neurogenesis, which may be an adaptive processes contributing to recovery after stroke. Our previous work showed that the antioxidant capacity of Momordica charantia polysaccharides (MCPs) could protect against cerebral ischemia/reperfusion (I/R) after stroke. However, whether the protective effect of MCPs on I/R injury is related to neural stem cell (NSC) proliferation remains unclear. In the present study, we designed invivo and invitro experiments to elucidate the underlying mechanisms by which MCPs promote endogenous NSC proliferation during cerebral I/R. Invivo results showed that MCPs rescued the memory and learning abilities of rats after I/R damage and enhanced NSC proliferation in the rat subventricular zone (SVZ) and subgrannular zone (SGZ) during I/R. Invitro experiments demonstrated that MCPs could stimulate the proliferation of C17.2 cells under oxygen-glucose deprivation (OGD) conditions. Further studies revealed that the proliferation-promoting mechanism of MCPs relied on increasing the activity of SIRT1, decreasing the level of acetylation of ß-catenin in the cytoplasm, and then triggering the translocation of ß-catenin into the nucleus. These data provide experimental evidence that the up-regulation of SIRT1 activity by MCPs led to an increased cytoplasmic deacetylation of ß-catenin, which promoted translocation of ß-catenin to the nucleus to participate in the signaling pathway involved in NSC proliferation. The present study reveals that MCPs function as a therapeutic drug to promote stroke recovery by increasing the activity of SIRT1, decreasing the level of acetylated ß-catenin, promoting the nuclear translocation of ß-catenin and thereby increasing endogenous NSC proliferation.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Momordica charantia , Células-Madre Neurales/efectos de los fármacos , Extractos Vegetales/farmacología , Polisacáridos/farmacología , Daño por Reperfusión/metabolismo , Sirtuina 1/metabolismo , Animales , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos
17.
Sci Adv ; 7(33)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34380610

RESUMEN

Poststroke optogenetic stimulations can promote functional recovery. However, the circuit mechanisms underlying recovery remain unclear. Elucidating key neural circuits involved in recovery will be invaluable for translating neuromodulation strategies after stroke. Here, we used optogenetic functional magnetic resonance imaging to map brain-wide neural circuit dynamics after stroke in mice treated with and without optogenetic excitatory neuronal stimulations in the ipsilesional primary motor cortex (iM1). We identified key sensorimotor circuits affected by stroke. iM1 stimulation treatment restored activation of the ipsilesional corticothalamic and corticocortical circuits, and the extent of activation was correlated with functional recovery. Furthermore, stimulated mice exhibited higher expression of axonal growth-associated protein 43 in the ipsilesional thalamus and showed increased Synaptophysin+/channelrhodopsin+ presynaptic axonal terminals in the corticothalamic circuit. Selective stimulation of the corticothalamic circuit was sufficient to improve functional recovery. Together, these findings suggest early involvement of corticothalamic circuit as an important mediator of poststroke recovery.

18.
Cond Med ; 3(2): 104-115, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34396060

RESUMEN

Ischemic postconditioning (IPostC) protects against brain injury induced by stroke and is a potential strategy for ischemic stroke treatment. Understanding its underlying mechanisms and potential hurdles is essential for clinical translation. In this review article, we will summarize the current advances in IPostC for stroke treatment and the underlying protective mechanisms. Strong evidence suggests that IPostC reduces brain infarct size, attenuates blood-brain barrier (BBB) damage and brain edema, and improves neurological outcomes. IPostC also promotes neurogenesis and angiogenesis at the recovery phase of ischemic stroke. The protective mechanisms involve its effects on anti-oxidative stress, anti-inflammation, and anti-apoptosis. In addition, it regulates neurotransmitter receptors, ion channels, heat shock proteins (HSP) 40/70, as well as growth factors such as BDNF and VEGF. Furthermore, IPostC modulates several cell signaling pathways, including the PI3K/Akt, MAPK, NF-κB, and the Gluk2/PSD95/MLK3/MKK7/JNK3 pathways. We also discuss the potential hurdles for IPostC's clinical translation, including insufficient IPostC algorithm studies, such as therapeutic time windows and ischemia-reperfusion periods and cycles, as well as its long-term protection. In addition, future studies should address confounding factors such as age, sex, and pre-existing conditions such as hypertension and hyperglycemia before stroke onset. At last, the combination of IPostC with other treatments, such as tissue plasminogen activator (t-PA), merits further exploration.

19.
Front Physiol ; 11: 433, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508671

RESUMEN

Oxidative stress and inflammation are two critical pathological processes of cerebral ischemia-reperfusion injury. Myeloperoxidase (MPO) is a critical inflammatory enzyme and therapeutic target triggering both oxidative stress and neuroinflammation in the pathological process of cerebral ischemia-reperfusion injury. MPO is presented in infiltrated neutrophils, activated microglial cells, neurons, and astrocytes in the ischemic brain. Activation of MPO can catalyze the reaction of chloride and H2O2 to produce HOCl. MPO also mediates oxidative stress by promoting the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), modulating the polarization and inflammation-related signaling pathways in microglia and neutrophils. MPO can be a therapeutic target for attenuating oxidative damage and neuroinflammation in ischemic stroke. Targeting MPO with inhibitors or gene deficiency significantly reduced brain infarction and improved neurological outcomes. This article discusses the important roles of MPO in mediating oxidative stress and neuroinflammation during cerebral ischemia-reperfusion injury and reviews the current understanding of the underlying mechanisms. Furthermore, we summarize the active compounds from medicinal herbs with potential as MPO inhibitors for anti-oxidative stress and anti-inflammation to attenuate cerebral ischemia-reperfusion injury, and as adjunct therapeutic agents for extending the window of thrombolytic treatment. We highlight that targeting MPO could be a promising strategy for alleviating ischemic brain injury, which merits further translational study.

20.
Mol Neurobiol ; 57(10): 4305-4321, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32700252

RESUMEN

Buyang Huanwu Decoction (BHD), a classic traditional Chinese medicine (TCM) formula, has been used for recovering neurological dysfunctions and treating post-stroke disability in China for 200 years. In the present study, we investigated the effects of BHD on inhibiting neuronal apoptosis, promoting proliferation and differentiation of neural stem cells (NSCs) and neurite formation and enhancing learning and memory functional recovery in an experimental rat ischemic stroke model. BHD significantly reduced infarct volume and decreased cell apoptosis in the ischemic brain. BHD enhanced neuronal cell viability in vitro. BHD dose-dependently promoted the proliferation of NSCs in ischemic rat brains in vivo. Moreover, BHD promoted neuronal and astrocyte differentiation in primary cultured NSCs in vitro. Water maze test revealed that BHD promoted the recovery of learning function but not memory functions in the transient ischemic rats. We then investigated the changes of the cellular signaling molecules by using two-dimension (2D) gel electrophoresis and focused on the PI3K/Akt/Bad and Jak2/Stat3/cyclin D1signaling pathway to uncover its underlying mechanisms for its neuroprotective and neurogenetic effects. BHD significantly upregulated the expression of p-PI3K, p-Akt, and p-Bad as well as the expression of p-Jak, p-Stat3, and cyclin D1 in vitro and in vivo. In addition, BHD upregulated Hes1 and downregulated cav-1 in vitro and in vivo. Taken together, these results suggest that BHD has neuroprotective effects and neurogenesis-promoting effects via activating PI3K/Akt/Bad and Jak2/Stat3/Cyclin D1 signaling pathways. Graphical Abstract Buyang Huanwu Decoction (BHD) activates the PI3K-AKT-BAD pathway in the ischemic brain for neuroprotection. BHD also activates JAK2/STAT3/Cyclin D1 signaling cascades for promoting neurogenesis in the hippocampus of post-ischemic brains. Moreover, BHD inhibits the expression of caveolin-1 and increases the expression of HES1 for promoting neuronal differentiation. The neuroprotective and neurogenesis-promoting effects in the hippocampus of post-ischemic brains promote learning ability.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Ataque Isquémico Transitorio/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Neurogénesis , Fármacos Neuroprotectores/uso terapéutico , Proteómica , Transducción de Señal , Proteínas 14-3-3/metabolismo , Animales , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Axones/patología , Caveolina 1/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclina D1/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Receptores ErbB/metabolismo , Ataque Isquémico Transitorio/complicaciones , Ataque Isquémico Transitorio/patología , Ataque Isquémico Transitorio/fisiopatología , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/fisiopatología , Janus Quinasa 2/metabolismo , Masculino , Memoria/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/patología , Neuritis/patología , Neurogénesis/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Células PC12 , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Daño por Reperfusión/complicaciones , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción HES-1/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Xantenos/farmacología , Proteína Letal Asociada a bcl/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA