Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2311283, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716925

RESUMEN

Bio-inspired in nature, using nanomaterials to fabricate the vivid bionic structural color and intelligent stimulus responsive interface as smart skin or optical devices are widely concerned and remain a huge challenge. Here, the bionic flexible film is designed and fabricated with chiral nanointerface and tunable hydrophilic-hydrophobic by the ultrasonic energy perturbation strategy and crosslinking of the cellulose nanocrystals (CNC). An intelligent nanointerface with adjustable hydrophilic and hydrophobic properties is constructed by the supramolecular assembly using a smart ionic liquid molecule. The bionic flexible film possessed the variable hydrophilic-hydrophobic, stimulus responsive, and robust iridescent structural color. The reflective wavelength and the helical pitch of the film can be easily modulated through the ultrasonic energy perturbation strategy. The bionic flexible film by covalent cross-linking has excellent robustness, good elasticity and flexibility. The tunable brilliant structural color of the chiral nanointerface is attributed to the surface charge change of the CNC photonic crystal, which is disturbed by ultrasonic energy perturbation. The bionic flexible film with tunable structure color has intelligent hydrophilic and hydrophobic stimulus response properties. The chiral bionic materials have potential applications in smart skin, optical devices, bionic materials, robots, anti-counterfeiting, colorful displays, and stealth materials.

2.
Nano Lett ; 22(15): 6383-6390, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35866680

RESUMEN

Designing intelligent molecules and smart nanomaterials as molecular machines is becoming increasingly important in the nanoscience fields. Herein, we report a nanodot actuator with changeable fluorescence by π-π stacking force based on a four-armed foldable phthalocyanine molecule. The assembled nanodot possessed a three-dimensional molecular space structure and multiple supramolecular interactions. The arms of the nanodot could fold and open intelligently in response to environmental molecular stimuli such as natural plant mimosa, which could lead to multiple variable fluorescence emissions. The nanodot was highly sensitive to the biomolecule thyroxine at the molecular level. The accurate molecular recognition and the changeable fluorescence conversion of the nanodot were attributed to multiple supramolecular interactions, including photoinduced electron transfer (PET), intramolecular fluorescence resonance energy transfer (FRET), and π-π stacking of the nanodots, resulting in an intelligent "nanodot machine with folding arms". The self-assembled nanodot actuators with changeable fluorescence have potential applications in advanced intelligent material fields.


Asunto(s)
Nanoestructuras , Transferencia Resonante de Energía de Fluorescencia , Isoindoles , Conformación Molecular
3.
Opt Lett ; 47(22): 5873-5876, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37219124

RESUMEN

An exciplex with significant thermally activated delayed fluorescence properties was realized, comprising diphenyl-[3'-(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)-biphenyl-4-yl]-amine as a donor and 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine as an acceptor. A very small energy difference between the singlet and triplet levels and a large rate constant of the reverse intersystem crossing were attained simultaneously, contributing to the efficient upconversion of triplet excitons from the triplet state to the singlet state and thermally activated delayed fluorescence emission. A high-efficiency organic light-emitting device based on the exciplex was fabricated, which exhibited a maximum current efficiency, power efficiency, external quantum efficiency, and exciton utilization efficiency of 23.1 cd/A, 24.2 lm/W, 7.32%, and 54%, respectively. The efficiency roll-off of the exciplex-based device was slight, as illustrated by a large critical current density of 34.1 mA/cm2. This efficiency roll-off was ascribed to triplet-triplet annihilation, as confirmed by the triplet-triplet annihilation model. We proved the high binding energy of the excitons and excellent charge confinement within the exciplex by performing transient electroluminescence measurements.

4.
Carbohydr Polym ; 331: 121895, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38388066

RESUMEN

To design flexible functional materials with high efficiency, light weight, less metal consumption, stable structure for the thermal infrared stealth materials is a great challenge. We hypothesized that the use of crystal materials with different sizes to design composites with a chiral layered helical structure, the layered structures can repeatedly reflect infrared ray. Here, we reported the novel multi-scale layered helical chiral structure composite by self-assembly using the co-dispersion of cellulose nanocrystals (CNC) and micro-nano Al sheets. A new stable interlocking supermolecular structure is formed between the positively charged metal sheet and the negatively charged CNC photonic crystals. Metal sheets and CNC organic crystals were hybridized at the molecular level and form the Pickering-like CNC-Al co-dispersion system. The metal sheets in CNC chiral helical layered structure greatly improve its near-infrared reflection and stealth camouflage. Surprisingly, the CNC/Al composite on the heated glass substrate enabled the temperature drop 23 °C, and made its emissivity in the range of 7-14 µm significantly reduce. The synergetic effect of the Al sheets and the CNCs helical structure greatly improved the thermal infrared reflection and heat insulation properties. It is expected to provide a chiral layered material for the infrared stealth, and pattern camouflage fields.

5.
ACS Nano ; 14(6): 7380-7388, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32484339

RESUMEN

Chiral liquid crystal materials that are responsive to environmental stimuli are in demand. A chiral photonic crystal membrane based on cellulose nanocrystals (CNCs) was prepared by molecule assembly in the present work. A fluorescent molecule containing a cationic group, [N-(3-N-benzyl-N,N-dimethylpropyl ammonium chloride)-1,8-naphthalimide]hydrazine, was assembled on the surface of the CNCs. The new chiral photonic crystal membrane possesses supersensitive multiresponses to small molecules, such as water and formaldehyde molecules. The appearance, liquid crystal texture, fluorescence, and color of the chiral membrane have sensitive changes induced by small molecules. By increasing RH from 30 to 100%, the reflectance peak of the membrane red-shifted from 498 to 736 nm. In particular, the iridescent texture and fingerprint structure of the membrane could change markedly under trace amounts of formaldehyde, and the chiral membrane can form an extremely sensitive off-on fluorescence switch. The relationship between the fluorescence intensity and the trace concentration of formaldehyde satisfied the linear equation with the association coefficient of 0.9997. The changes in fluorescence and color are visible to the naked eye, and the membrane can quantitatively recognize trace formaldehyde at a molecular level in a humid environment. The mechanism by which the fluorescence switch operates was investigated using density functional theory at the B3LYP/6-31G(d) level. The membrane has potential for use in the fields of advanced functional materials and biomaterials.

6.
ACS Appl Mater Interfaces ; 12(21): 24505-24511, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32362108

RESUMEN

Light- and humidity-responsive chiral nematic photonic crystal (PC) films containing cellulose nanocrystals (CNCs) were fabricated. A photoactive polymer with hydrophilic groups, poly-(3,3'-benzophenone-4,4'-dicarboxylic acid dicarboxylate polyethylene glycol) ester, was coassembled with CNCs to form flexible iridescent films with a tunable chiral nematic order. In the coassembly process, the intermolecular hydrogen bonds of CNCs were weakened, which facilitated the fine regulation of the chiral PC nanostructure. The PC films displayed sensitive responses to both light and humidity. With increasing humidity from 30 to 100%, the chiral nematic helix pitch increased from 328 to 422 nm. The color of the PC films changed from blue to green, yellow, orange, and dark red with increasing relative humidity. Over 15 min of light irradiation, the absorption intensity of the films increased gradually. The light and humidity responses of the films were reversible. The films maintained their variable cholesteric liquid crystal texture and helical lamellar structure after light irradiation at different humidities. These PC films are expected to be useful in intelligent coatings and 3D printing.

7.
Mater Sci Eng C Mater Biol Appl ; 103: 109821, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31349531

RESUMEN

Violacein, a natural violet biopigment with efficient bioactivities from Gram-negative bacteria, possesses good affinity to silk fiber and complexes with silver. In this paper, a new approach involving the surface modification of silk fabrics with violacein for the in-situ synthesis of silver nanoparticles (SNPs) was developed. Violacein is used to modify silk material. Subsequently, silk containing bio-violacein was in situ assembled by silver ions and formed SNPs. Functional silk composites (FSC) containing bio-violacein and SNPs were obtained with effective synergistic antimicrobial effects. FSC were characterized by FT-IR spectroscopy, UV-visible absorption spectroscopy, and scanning electron microscopy/energy dispersive spectroscopy, and X-ray diffraction. Exhaustion and amount of violacein on silk fabric were 65.82% and 0.16 g/g, respectively. SNPs were small particles with irregular shapes and sizes <60-70 nm. Antimicrobial activities of the FSC were evaluated against S. aureus, E. coli, and C. albicans. The silk fabric with violacein possessed good antimicrobial activity against S. aureus, with a bacterial reduction of 81.25%. FSC with violacein combined with SNPs integration exhibited good synergistic properties as excellent antimicrobial activities against S. aureus, E. coli, and C. albicans, with microbial reductions of 99.98%, 99.90%, and 99.85%, respectively. FSC not only exhibited the enhanced antimicrobial effects but also exhibited a broadened antimicrobial range.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Indoles/farmacología , Nanopartículas del Metal/química , Seda/farmacología , Plata/farmacología , Candida albicans/efectos de los fármacos , Sinergismo Farmacológico , Escherichia coli/efectos de los fármacos , Nanopartículas del Metal/uso terapéutico , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Seda/química , Plata/química , Espectrometría por Rayos X , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA