Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 18(3): e1010366, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35235615

RESUMEN

Tryptophan (Trp) metabolism through the kynurenine pathway (KP) is well known to play a critical function in cancer, autoimmune and neurodegenerative diseases. However, its role in host-pathogen interactions has not been characterized yet. Herein, we identified that kynurenine-3-monooxygenase (KMO), a key rate-limiting enzyme in the KP, and quinolinic acid (QUIN), a key enzymatic product of KMO enzyme, exerted a novel antiviral function against a broad range of viruses. Mechanistically, QUIN induced the production of type I interferon (IFN-I) via activating the N-methyl-d-aspartate receptor (NMDAR) and Ca2+ influx to activate Calcium/calmodulin-dependent protein kinase II (CaMKII)/interferon regulatory factor 3 (IRF3). Importantly, QUIN treatment effectively inhibited viral infections and alleviated disease progression in mice. Furthermore, kmo-/- mice were vulnerable to pathogenic viral challenge with severe clinical symptoms. Collectively, our results demonstrated that KMO and its enzymatic product QUIN were potential therapeutics against emerging pathogenic viruses.


Asunto(s)
Quinurenina 3-Monooxigenasa , Virosis , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Quinurenina/metabolismo , Quinurenina 3-Monooxigenasa/metabolismo , Ratones , Ácido Quinolínico/metabolismo , Ácido Quinolínico/farmacología , Virosis/tratamiento farmacológico
2.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925089

RESUMEN

Deeply understanding the virus-host interaction is a prerequisite for developing effective anti-viral strategies. Traditionally, the transporter associated with antigen processing type 1 (TAP1) is critical for antigen presentation to regulate adaptive immunity. However, its role in controlling viral infections through modulating innate immune signaling is not yet fully understood. In the present study, we reported that TAP1, as a product of interferon-stimulated genes (ISGs), had broadly antiviral activity against various viruses such as herpes simplex virus 1 (HSV-1), adenoviruses (AdV), vesicular stomatitis virus (VSV), dengue virus (DENV), Zika virus (ZIKV), and influenza virus (PR8) etc. This antiviral activity by TAP1 was further confirmed by series of loss-of-function and gain-of-function experiments. Our further investigation revealed that TAP1 significantly promoted the interferon (IFN)-ß production through activating the TANK binding kinase-1 (TBK1) and the interferon regulatory factor 3 (IRF3) signaling transduction. Our work highlighted the broadly anti-viral function of TAP1 by modulating innate immunity, which is independent of its well-known function of antigen presentation. This study will provide insights into developing novel vaccination and immunotherapy strategies against emerging infectious diseases.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/inmunología , Antivirales/inmunología , Interacciones Microbiota-Huesped/inmunología , Interferón Tipo I/biosíntesis , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/deficiencia , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/genética , Animales , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Inmunidad Innata , Factor 3 Regulador del Interferón/inmunología , Ratones , Modelos Inmunológicos , Proteínas Serina-Treonina Quinasas/inmunología , Células RAW 264.7 , Receptores Toll-Like/agonistas , Virosis/inmunología
3.
Viruses ; 14(3)2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35336927

RESUMEN

Numerous pathogenic microbes, including viruses, bacteria, and fungi, usually infect the host through the mucosal surfaces of the respiratory tract, gastrointestinal tract, and reproductive tract. The mucosa is well known to provide the first line of host defense against pathogen entry by physical, chemical, biological, and immunological barriers, and therefore, mucosa-targeting vaccination is emerging as a promising strategy for conferring superior protection. However, there are still many challenges to be solved to develop an effective mucosal vaccine, such as poor adhesion to the mucosal surface, insufficient uptake to break through the mucus, and the difficulty in avoiding strong degradation through the gastrointestinal tract. Recently, increasing efforts to overcome these issues have been made, and we herein summarize the latest findings on these strategies to develop mucosa-targeting vaccines, including a novel needle-free mucosa-targeting route, the development of mucosa-targeting vectors, the administration of mucosal adjuvants, encapsulating vaccines into nanoparticle formulations, and antigen design to conjugate with mucosa-targeting ligands. Our work will highlight the importance of further developing mucosal vaccine technology to combat the frequent outbreaks of infectious diseases.


Asunto(s)
Enfermedades Transmisibles Emergentes , Vacunas , Adyuvantes Inmunológicos , Antígenos , Enfermedades Transmisibles Emergentes/prevención & control , Humanos , Inmunidad Mucosa , Membrana Mucosa , Vacunación
4.
Antiviral Res ; 205: 105383, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35917969

RESUMEN

The frequently emerging SARS-CoV-2 variants have weakened the effectiveness of existing COVID-19 vaccines and neutralizing antibody therapy. Nevertheless, the infections of SARS-CoV-2 variants still depend on angiotensin-converting enzyme 2 (ACE2) receptor-mediated cell entry, and thus the soluble human ACE2 (shACE2) is a potential decoy for broadly blocking SARS-CoV-2 variants. In this study, we firstly generated the recombinant AAVrh10-vectored shACE2 constructs, a kind of adeno-associated virus (AAV) serotype with pulmonary tissue tropism, and then validated its inhibition capacity against SARS-CoV-2 infection. To further optimize the minimized ACE2 functional domain candidates, a comprehensive analysis was performed to clarify the interactions between the ACE2 orthologs from various species and the receptor binding domain (RBD) of SARS-CoV-2 spike (S) protein. Based on the key interface amino acids, we designed a series of truncated ACE2 orthologs, and then assessed their potential affinity to bind to SARS-CoV-2 variants RBD in silico. Of note, we found that the 24-83aa fragment of dog ACE2 (dACE224-83) had a higher affinity to the RBD of SARS-CoV-2 variants than that of human ACE2. Importantly, AAVrh10-vectored shACE2 or dACE224-83 constructs exhibited a broadly blockage breadth against SARS-CoV-2 prototype and variants in vitro and ex vivo. Collectively, these data highlighted a promising therapeutic strategy against SARS-CoV-2 variants.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/terapia , Vacunas contra la COVID-19 , Perros , Humanos , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus
5.
Viruses ; 13(11)2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34835049

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters host cells mainly by the angiotensin converting enzyme 2 (ACE2) receptor, which can recognize the spike (S) protein by its extracellular domain. Previously, recombinant soluble ACE2 (sACE2) has been clinically used as a therapeutic treatment for cardiovascular diseases. Recent data demonstrated that sACE2 can also be exploited as a decoy to effectively inhibit the cell entry of SARS-CoV-2, through blocking SARS-CoV-2 binding to membrane-anchored ACE2. In this study, we summarized the current findings on the optimized sACE2-based strategies as a therapeutic agent, including Fc fusion to prolong the half-life of sACE2, deep mutagenesis to create high-affinity decoys for SARS-CoV-2, or designing the truncated functional fragments to enhance its safety, among others. Considering that COVID-19 patients are often accompanied by manifestations of cardiovascular complications, we think that administration of sACE2 in COVID-19 patients may be a promising therapeutic strategy to simultaneously treat both cardiovascular diseases and SARS-CoV-2 infection. This review would provide insights for the development of novel therapeutic agents against the COVID-19 pandemic.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Enfermedades Cardiovasculares/tratamiento farmacológico , Proteínas Recombinantes de Fusión/uso terapéutico , SARS-CoV-2 , Animales , COVID-19/complicaciones , Enfermedades Cardiovasculares/complicaciones , Humanos , Peptidil-Dipeptidasa A , Unión Proteica , Ingeniería de Proteínas , Receptores Virales/metabolismo , Receptores Virales/uso terapéutico , Glicoproteína de la Espiga del Coronavirus
6.
Hum Vaccin Immunother ; 17(7): 2279-2288, 2021 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-33522405

RESUMEN

Background: A safe and effective vaccine against COVID-19 has become a public health priority. However, little is known about the public willingness to accept a future COVID-19 vaccine in China. This study aimed to understand the willingness and determinants for the acceptance of a COVID-19 vaccine among Chinese adults.Methods: A cross-sectional survey using an online questionnaire was conducted in an adult population in China. Chi-square tests were used to identify differences for various intentions regarding COVID-19 vaccination. The t test was used to identify differences among vaccine hesitancy scores. Multivariable logistic regression was used to analyze the predicated factors associated with the willingness to receive a COVID-19 vaccine.Results: Of the 3195 eligible participants, 83.8% were willing to receive a COVID-19 vaccine, and 76.6% believed the vaccine would be beneficial to their health; however, 74.9% expressed concerns or a neutral attitude regarding its potential adverse effects. Of the participants, 76.5% preferred domestically manufactured vaccines and were more willing to be vaccinated than those who preferred imported vaccines. Multivariable logistic regression indicated that lack of confidence, complacency in regard to health, risk of the vaccine, and attention frequency were the main factors affecting the intention to receive a COVID-19 vaccine.Conclusion: Our study indicated that the respondents in China had a high willingness to accept a COVID-19 vaccine, but some participants also worried about its adverse effects. Information regarding the efficacy and safety of an upcoming COVID-19 vaccine should be disseminated to ensure its acceptance and coverage.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , China , Estudios Transversales , Humanos , SARS-CoV-2 , Encuestas y Cuestionarios , Vacunación
7.
Viruses ; 12(7)2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32640529

RESUMEN

With the frequent outbreaks of emerging infectious diseases in recent years, an effective broad-spectrum antiviral drug is becoming an urgent need for global public health. Cholesterol-25-hydroxylase (CH25H) and its enzymatic products 25-hydroxycholesterol (25HC), a well-known oxysterol that regulates lipid metabolism, have been reported to play multiple functions in modulating cholesterol homeostasis, inflammation, and immune responses. CH25H and 25HC were recently identified as exerting broadly antiviral activities, including upon a variety of highly pathogenic viruses such as human immunodeficiency virus (HIV), Ebola virus (EBOV), Nipah virus (NiV), Rift Valley fever virus (RVFV), and Zika virus (ZIKV). The underlying mechanisms for its antiviral activities are being extensively investigated but have not yet been fully clarified. In this study, we summarized the current findings on how CH25H and 25HC play multiple roles to modulate cholesterol metabolism, inflammation, immunity, and antiviral infections. Overall, 25HC should be further studied as a potential therapeutic agent to control emerging infectious diseases in the future.


Asunto(s)
Antivirales/farmacología , Hidroxicolesteroles/farmacología , Inmunidad/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Esteroide Hidroxilasas/farmacología , Animales , Humanos , Virosis/tratamiento farmacológico , Virus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA