Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(10): e202318628, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38225206

RESUMEN

An anion-counterion strategy is proposed to construct organic mono-radical charge-transfer cocrystals for near-infrared photothermal conversion and solar-driven water evaporation. Ionic compounds with halogen anions as the counterions serve as electron donors, providing the necessary electrons for efficient charge transfer with unchanged skeleton atoms and structures as well as the broad red-shifted absorption (200-2000 nm) and unprecedented photothermal conversion efficiency (~90.5 %@808 nm) for the cocrystals. Based on these cocrystals, an excellent solar-driven interfacial water evaporation rate up to 6.1±1.1 kg ⋅ m-2 ⋅ h-1 under 1 sun is recorded due to the comprehensive evaporation effect from the cocrystal loading in polyurethane foams and chimney addition, such performance is superior to the reported results on charge-transfer cocrystals or other materials for solar-driven interfacial evaporation. This prototype exhibits the great potential of cocrystals prepared by the one-step mechanochemistry method in practical large-scale seawater desalination applications.

2.
J Phys Chem Lett ; 15(1): 68-75, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38131660

RESUMEN

The specific stacking mode of D/A blocks is often considered to largely determine the physicochemical properties of cocrystals. However, this rule may fail when encountering a large degree of (integer or near-integer) charge transfer situations. Herein, we explore the extensive correlations between the possible smallest structural units, stacking modes, and near-infrared photothermal conversion (NIR-PTC) properties of F4TCNQ-based cocrystals with typical features of integer-charge-transfer. Surprisingly, these cocrystals with distinct stacking modes display analogous D-A interactions, broad red-shift absorption, ultrafast (1-3 ps) relaxation dynamics of excited states, and excellent NIR-PTC properties. This supports that the resulting "D+A-" ion pairs from integer-charge-transfer may serve as the primary structural units beneath the secondary stacking modes to dominate the property of cocrystals. The stacking modes play an important but only secondary role. This work provides new insights into the structure-dynamics-property correlations and modular design of organic cocrystals for PTC and other applications.

3.
ChemSusChem ; 16(14): e202300644, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37277977

RESUMEN

Inspired by the concept of ionic charge-transfer complexes for the Mott insulator, integer-charge-transfer (integer-CT) cocrystals are designed for NIR photo-thermal conversion (PTC). With amino-styryl-pyridinium dyes and F4TCNQ (7,7',8,8'-Tetracyano-2,3,5,6-tetrafluoroquinodimethane) serving as donor/acceptor (D/A) units, integer-CT cocrystals, including amorphous stacking "salt" and segregated stacking "ionic crystal", are synthesized by mechanochemistry and solution method, respectively. Surprisingly, the integer-CT cocrystals are self-assembled only through multiple D-A hydrogen bonds (C-H⋅⋅⋅X (X=N, F)). Strong charge-transfer interactions in cocrystals contribute to the strong light-harvesting ability at 200-1500 nm. Under 808 nm laser illumination, both the "salt" and "ionic crystal" display excellent PTC efficiency beneficial from ultrafast (∼2 ps) nonradiative decay of excited states. Thus integer-CT cocrystals are potential candidates for rapid, efficient, and scalable PTC platforms. Especially amorphous "salt" with good photo/thermal stability is highly desirable in practical large-scale solar-harvesting/conversion applications in water environment. This work verifies the validity of the integer-CT cocrystal strategy, and charts a promising path to synthesize amorphous PTC materials by mechanochemical method in one-step.

4.
ChemSusChem ; 16(14): e202300919, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37431190

RESUMEN

Invited for this month's cover is the group of Shun-Li Chen and Ming-De Li at the Shantou University. The image shows that one electron can be transferred easily from donor to acceptor unit to obtain integer-charge-transfer cocrystals for realizing high-efficient solar-harvesting and photothermal conversion. The Research Article itself is available at 10.1002/cssc.202300644.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA