Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 401, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269632

RESUMEN

Methylglyoxal (MGO), a reactive dicarbonyl metabolite of glucose, plays a prominent role in the pathogenesis of diabetes and vascular complications. Our previous studies have shown that MGO is associated with increased oxidative stress, inflammatory responses and apoptotic cell death in endothelial cells (ECs). Pyroptosis is a novel form of inflammatory caspase-1-dependent programmed cell death that is closely associated with the activation of the NOD-like receptor 3 (NLRP3) inflammasome. Recent studies have shown that sulforaphane (SFN) can inhibit pyroptosis, but the effects and underlying mechanisms by which SFN affects MGO-induced pyroptosis in endothelial cells have not been determined. Here, we found that SFN prevented MGO-induced pyroptosis by suppressing oxidative stress and inflammation in vitro and in vivo. Our results revealed that SFN dose-dependently prevented MGO-induced HUVEC pyroptosis, inhibited pyroptosis-associated biochemical changes, and attenuated MGO-induced morphological alterations in mitochondria. SFN pretreatment significantly suppressed MGO-induced ROS production and the inflammatory response by inhibiting the NLRP3 inflammasome (NLRP3, ASC, and caspase-1) signaling pathway by activating Nrf2/HO-1 signaling. Similar results were obtained in vivo, and we demonstrated that SFN prevented MGO-induced oxidative damage, inflammation and pyroptosis by reversing the MGO-induced downregulation of the NLRP3 signaling pathway through the upregulation of Nrf2. Additionally, an Nrf2 inhibitor (ML385) noticeably attenuated the protective effects of SFN on MGO-induced pyroptosis and ROS generation by inhibiting the Nrf2/HO-1 signaling pathway, and a ROS scavenger (NAC) and a permeability transition pore inhibitor (CsA) completely reversed these effects. Moreover, NLRP3 inhibitor (MCC950) and caspase-1 inhibitor (VX765) further reduced pyroptosis in endothelial cells that were pretreated with SFN. Collectively, these findings broaden our understanding of the mechanism by which SFN inhibits pyroptosis induced by MGO and suggests important implications for the potential use of SFN in the treatment of vascular diseases.


Asunto(s)
Glucosa , Células Endoteliales de la Vena Umbilical Humana , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés Oxidativo , Piroptosis , Piruvaldehído , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/efectos de los fármacos , Piruvaldehído/metabolismo , Piruvaldehído/farmacología , Humanos , Estrés Oxidativo/efectos de los fármacos , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Animales , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Glucosa/metabolismo , Isotiocianatos/farmacología , Ratones , Sulfóxidos/farmacología , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Masculino , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
2.
Anal Chem ; 96(22): 9078-9087, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38770734

RESUMEN

As an important disease biomarker, the development of sensitive detection strategies for miRNA, especially intracellular miRNA imaging strategies, is helpful for early diagnosis of diseases, pathological research, and drug development. Hybridization chain reaction (HCR) is widely used for miRNA imaging analysis because of its high specificity and lack of biological enzymes. However, the classic HCR reaction exhibits linear amplification with low efficiency, limiting its use for the rapid analysis of trace miRNA in living cells. To address this problem, we proposed a toehold-mediated exponential HCR (TEHCR) to achieve highly sensitive and efficient imaging of miRNA in living cells using ß-FeOOH nanoparticles as transfection vectors. The detection limit of TEHCR was as low as 92.7 fM, which was 8.8 × 103 times lower compared to traditional HCR, and it can effectively distinguish single-base mismatch with high specificity. The TEHCR can also effectively distinguish the different expression levels of miRNA in cancer cells and normal cells. Furthermore, TEHCR can be used to construct OR logic gates for dual miRNA analysis without the need for additional probes, demonstrating high flexibility. This method is expected to play an important role in clinical miRNA-related disease diagnosis and drug development as well as to promote the development of logic gates.


Asunto(s)
MicroARNs , Hibridación de Ácido Nucleico , MicroARNs/análisis , MicroARNs/metabolismo , Humanos , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico/métodos , Compuestos Férricos/química
3.
Anal Chem ; 96(2): 910-916, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38171356

RESUMEN

Early tumor diagnosis is crucial to successful treatment. Earlier studies have shown that microRNA is a biomarker for early tumor diagnosis. The development of highly sensitive miRNA detection methods, especially in living cells, plays an indispensable role for early diagnosis and treatment of tumor. Although the catalytic hairpin assembly (CHA)-based miRNA analysis strategy is commonly used for disease diagnosis, further application of CHA is hindered due to its low amplification efficiency and low tumor recognition contrast. To address these limitations, we propose a dual-signal amplification strategy based on CHA and APE1-assisted amplification, enabling highly sensitive and high-contrast miRNA imaging. The miR-221 was selected as a target model. This dual-signal amplification strategy has exhibited high amplification efficiency, which could analyze miRNA as low as 21 fM. This strategy also exhibited high specificity, which could distinguish target miRNA and nontarget with single-base differences. Moreover, this method showed significant potential for practical application, as it could successfully distinguish the expression difference of miR-221 in the plasma samples of normal people and patients. Most importantly, the expression level of the APE1 enzyme in tumor cells is higher than that in normal cells, allowing this strategy to sensitively and specifically image miRNA within tumor cells. This proposed method has also been successfully used to indicate fluctuations of intracellular miRNA and to distinguish miRNA expression between normal cells and cancer cells with high contrast. We anticipate that this method will provide fresh insights and can be a powerful tool for tumor diagnosis and treatment based on miRNA analysis.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Humanos , MicroARNs/análisis , Técnicas Biosensibles/métodos , Catálisis , Diagnóstico por Imagen , Límite de Detección
4.
Anal Chem ; 96(17): 6774-6783, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38634427

RESUMEN

The identification of a specific tumor cell is crucial for the early diagnosis and treatment of cancer. However, it remains a challenge due to the limited sensitivity and accuracy, long response time, and low contrast of the recent approaches. In this study, we develop a dual miRNA-triggered DNA walker (DMTDW) assisted by APE1 for the specific recognition of tumor cells. miR-10b and miR-155 were selected as the research models. Without miR-10b and miR-155 presence, the DNA walker remains inactive as its walking strand of W is locked by L1 and L2. After miR-10b and miR-155 are input, the DNA walker is triggered as miR-10b and miR-155 bind to L1 and L2 of W-L1-L2, respectively, unlocking W. The DNA walker is driven by endogenous APE1 that is highly catalytic and is highly expressed in the cytoplasm of tumor cells but barely expressed in normal cells, ensuring high contrast and reaction efficiency for specific recognition of tumor cells. Dual miRNA input is required to trigger the DNA walker, making this strategy with a high accuracy. The DMTDW strategy exhibited high sensitivity for miRNA analysis with a detection limit of 44.05 pM. Living cell-imaging experiments confirmed that the DMTDW could effectively respond to the fluctuation of miRNA and specifically identified MDA-MB-231 cells from different cell lines. The proposed DMTDW is sensitive, rapid, and accurate for specific tumor cell recognition. We believe that the DMTDW strategy can become a powerful diagnostic tool for the specific recognition of tumor cells.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa , MicroARNs , MicroARNs/análisis , MicroARNs/metabolismo , MicroARNs/genética , Humanos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN/química , Línea Celular Tumoral
5.
Small ; 20(10): e2306471, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37919853

RESUMEN

Zinc oxide (ZnO) is widely used as an electron transporting layer (ETL) for organic solar cells (OSCs). Here, a low-cost commercial water/alcohol-soluble fluorescent conversion agent, sodium 2,2'-([1,1'-biphenyl]-4,4'-diyldivinylene)-bis(benzenesulfonate) (CBS), is incorporated into ZnO to develop a novel organic-inorganic hybrid ETL for high-performance OSCs. The photoinduced charge transfer from CBS to ZnO significantly improves the charge transport properties of ZnO, resulting in faster electron extraction and reduced charge recombination in OSC devices with ZnO:CBS ETLs. ZnO:CBS-based devices exhibit higher power conversion efficiencies (PCEs) than their pure ZnO-based counterparts, especially in devices with a thicker ETL, which is more suitable for roll-to-roll and large-area module processing. Furthermore, the strong ultraviolet-light absorption capability of CBS inhibits the photodegradation of the active layer, improving the photostability of ZnO:CBS based OSC devices. Therefore, this work provides a simple and effective strategy for realizing high-performance OSCs with high PCE and good photostability, which can further facilitate the commercialization of OSCs.

6.
Small ; 20(10): e2306095, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37903361

RESUMEN

Seasonal influenza still greatly threatens public health worldwide, leading to significant morbidity and mortality. Antiviral medications for influenza treatment are limited and accompanied by increased drug resistance. In severe influenza virus infection, hyperinflammation and hypoxia may be the significant threats associated with mortality, so the development of effective therapeutic methods to alleviate excessive inflammation while reducing viral damage is highly pursued. Here, a multifunctional MOF-based nanohybrid of Cu─TCPP@Mn3 O4 as a novel drug against influenza A virus infection (MOF = metal-organic framework; TCPP = tetrakis (4-carboxyphenyl) porphyrin) is designed. Cu─TCPP@Mn3 O4 exhibits potent inhibitory capability against influenza A virus infection in vitro and in vivo. The mechanism study reveals that Cu─TCPP@Mn3 O4 inhibits the virus entry by binding to the HA2 subunit of influenza A virus hemagglutinin. In addition, the nanoparticles of Mn3 O4 in Cu─TCPP@Mn3 O4 can scavenge intracellular ROS with O2 generation to downregulate inflammatory factors and effectively inhibit cytokines production. By reconstructing the antioxidant microenvironment, Cu─TCPP@Mn3 O4 features as a promising nanomedicine with anti-inflammatory and anti-viral synergistic effects.


Asunto(s)
Gripe Humana , Nanopartículas , Humanos , Especies Reactivas de Oxígeno , Inflamación/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico
7.
Basic Res Cardiol ; 119(1): 113-131, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168863

RESUMEN

Calcium overload is the key trigger in cardiac microvascular ischemia-reperfusion (I/R) injury, and calreticulin (CRT) is a calcium buffering protein located in the endoplasmic reticulum (ER). Additionally, the role of pinacidil, an antihypertensive drug, in protecting cardiac microcirculation against I/R injury has not been investigated. Hence, this study aimed to explore the benefits of pinacidil on cardiac microvascular I/R injury with a focus on endothelial calcium homeostasis and CRT signaling. Cardiac vascular perfusion and no-reflow area were assessed using FITC-lectin perfusion assay and Thioflavin-S staining. Endothelial calcium homeostasis, CRT-IP3Rs-MCU signaling expression, and apoptosis were assessed by real-time calcium signal reporter GCaMP8, western blotting, and fluorescence staining. Drug affinity-responsive target stability (DARTS) assay was adopted to detect proteins that directly bind to pinacidil. The present study found pinacidil treatment improved capillary density and perfusion, reduced no-reflow and infraction areas, and improved cardiac function and hemodynamics after I/R injury. These benefits were attributed to the ability of pinacidil to alleviate calcium overload and mitochondria-dependent apoptosis in cardiac microvascular endothelial cells (CMECs). Moreover, the DARTS assay showed that pinacidil directly binds to HSP90, through which it inhibits chaperone-mediated autophagy (CMA) degradation of CRT. CRT overexpression inhibited IP3Rs and MCU expression, reduced mitochondrial calcium inflow and mitochondrial injury, and suppressed endothelial apoptosis. Importantly, endothelial-specific overexpression of CRT shared similar benefits with pinacidil on cardiovascular protection against I/R injury. In conclusion, our data indicate that pinacidil attenuated microvascular I/R injury potentially through improving CRT degradation and endothelial calcium overload.


Asunto(s)
Autofagia Mediada por Chaperones , Daño por Reperfusión , Humanos , Pinacidilo/metabolismo , Células Endoteliales/metabolismo , Calreticulina/metabolismo , Calcio/metabolismo , Daño por Reperfusión/metabolismo , Apoptosis
8.
Pharmacol Res ; 200: 107057, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218357

RESUMEN

Mitochondria-associated ferroptosis exacerbates cardiac microvascular dysfunction in diabetic cardiomyopathy (DCM). Nicorandil, an ATP-sensitive K+ channel opener, protects against endothelial dysfunction, mitochondrial dysfunction, and DCM; however, its effects on ferroptosis and mitophagy remain unexplored. The present study aimed to assess the beneficial effects of nicorandil against endothelial ferroptosis in DCM and the underlying mechanisms. Cardiac microvascular perfusion was assessed using a lectin perfusion assay, while mitophagy was assessed via mt-Keima transfection and transmission electron microscopy. Ferroptosis was examined using mRNA sequencing, fluorescence staining, and western blotting. The mitochondrial localization of Parkin, ACSL4, and AMPK was determined via immunofluorescence staining. Following long-term diabetes, nicorandil treatment improved cardiac function and remodeling by alleviating cardiac microvascular injuries, as evidenced by the improved microvascular perfusion and structural integrity. mRNA-sequencing and biochemical analyses showed that ferroptosis occurred and Pink1/Parkin-dependent mitophagy was suppressed in cardiac microvascular endothelial cells after diabetes. Nicorandil treatment suppressed mitochondria-associated ferroptosis by promoting the Pink1/Parkin-dependent mitophagy. Moreover, nicorandil treatment increased the phosphorylation level of AMPKα1 and promoted its mitochondrial translocation, which further inhibited the mitochondrial translocation of ACSL4 via mitophagy and ultimately suppressed mitochondria-associated ferroptosis. Importantly, overexpression of mitochondria-localized AMPKα1 (mitoAα1) shared similar benefits with nicorandil on mitophagy, ferroptosis and cardiovascular protection against diabetic injury. In conclusion, the present study demonstrated the therapeutic effects of nicorandil against cardiac microvascular ferroptosis in DCM and revealed that the mitochondria-localized AMPK-Parkin-ACSL4 signaling pathway mediates mitochondria-associated ferroptosis and the development of cardiac microvascular dysfunction.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Ferroptosis , Humanos , Cardiomiopatías Diabéticas/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Nicorandil/farmacología , Nicorandil/uso terapéutico , Nicorandil/metabolismo , Células Endoteliales/metabolismo , Mitocondrias/metabolismo , Transducción de Señal , Miocitos Cardíacos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , ARN Mensajero/metabolismo , Diabetes Mellitus/metabolismo
9.
Inorg Chem ; 63(28): 13014-13021, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38943593

RESUMEN

Zwitterionic thiolate ligands have the potential to introduce novel assembly modes and functions for noble metal clusters. However, their utilization in the synthesis of silver clusters remains understudied, particularly for the clusters containing reductive Ag(0) species. In this article, we report the first synthesis of a mixed-valence silver(0/I) cluster protected by zwitterionic Tab as thiolate ligands (Tab = 4-(trimethylammonio)benzenethiolate), denoted as [Ag22(Tab)24](PF6)20·16CH3OH·6Et2O (Ag22·16CH3OH·6Et2O), alongside an Ag(I) cluster [Ag20(Tab)12(PhCOO)10(MeCN)2(H2O)](PF6)10·11MeCN (Ag20·11MeCN). Ag22 has a distinct hierarchical supratetrahedral structure with a central {Ag6} kernel surrounded by four [Ag4(Tab)6]4+ units. High-resolution electrospray ionization mass spectra demonstrate that Ag22 has two free electrons, indicating a superatomic core. Ag20 has a drum-like [Ag12(Tab)6(PhCOO)6(H2O)]6+ inner core capped by two tetrahedral-like [Ag4(Tab)3(PhCOO)2(MeCN)]2+ units. Ag20 can be transformed into Ag22 after its reaction with NaBH4 in solution. Antibacterial measurements reveal that Ag22 has a significantly lower minimum inhibitory concentration than that of the Ag20 cluster. This work not only extends the stabilization of silver(0/I) clusters to neutral thiol ligands but also offers new materials for the development of novel antibacterial materials.

10.
J Nanobiotechnology ; 22(1): 275, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778401

RESUMEN

BACKGROUND: Acute gouty is caused by the excessive accumulation of Monosodium Urate (MSU) crystals within various parts of the body, which leads to a deterioration of the local microenvironment. This degradation is marked by elevated levels of uric acid (UA), increased reactive oxygen species (ROS) production, hypoxic conditions, an upsurge in pro-inflammatory mediators, and mitochondrial dysfunction. RESULTS: In this study, we developed a multifunctional nanoparticle of polydopamine-platinum (PDA@Pt) to combat acute gout by leveraging mild hyperthermia to synergistically enhance UA degradation and anti-inflammatory effect. Herein, PDA acts as a foundational template that facilitates the growth of a Pt shell on the surface of its nanospheres, leading to the formation of the PDA@Pt nanomedicine. Within this therapeutic agent, the Pt nanoparticle catalyzes the decomposition of UA and actively breaks down endogenous hydrogen peroxide (H2O2) to produce O2, which helps to alleviate hypoxic conditions. Concurrently, the PDA component possesses exceptional capacity for ROS scavenging. Most significantly, Both PDA and Pt shell exhibit absorption in the Near-Infrared-II (NIR-II) region, which not only endow PDA@Pt with superior photothermal conversion efficiency for effective photothermal therapy (PTT) but also substantially enhances the nanomedicine's capacity for UA degradation, O2 production and ROS scavenging enzymatic activities. This photothermally-enhanced approach effectively facilitates the repair of mitochondrial damage and downregulates the NF-κB signaling pathway to inhibit the expression of pro-inflammatory cytokines. CONCLUSIONS: The multifunctional nanomedicine PDA@Pt exhibits exceptional efficacy in UA reduction and anti-inflammatory effects, presenting a promising potential therapeutic strategy for the management of acute gout.


Asunto(s)
Gota , Indoles , Polímeros , Especies Reactivas de Oxígeno , Ácido Úrico , Gota/tratamiento farmacológico , Gota/metabolismo , Gota/terapia , Especies Reactivas de Oxígeno/metabolismo , Animales , Ratones , Polímeros/química , Indoles/química , Indoles/farmacología , Nanopartículas/química , Platino (Metal)/química , Platino (Metal)/farmacología , Platino (Metal)/uso terapéutico , Humanos , Peróxido de Hidrógeno/metabolismo , Hipertermia Inducida/métodos , Células RAW 264.7 , Terapia Fototérmica/métodos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Masculino
11.
Molecules ; 29(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38893373

RESUMEN

Developing clinically meaningful nanomedicines for cancer therapy requires the drugs to be effective, safe, simple, cheap, and easy to store. In the present work, we report that a simple cationic Fe(III)-rich salt of [FeIIICl(TMPPH2)][FeIIICl4]2 (Fe-TMPP) exhibits a superior anticancer performance on a broad spectrum of cancer cell lines, including breast, colorectal cancer, liver, pancreatic, prostate, and gastric cancers, with half maximal inhibitory concentration (IC50) values in the range of 0.098-3.97 µM (0.066-2.68 µg mL-1), comparable to the best-reported medicines. Fe-TMPP can form stand-alone nanoparticles in water without the need for extra surface modification or organic-solvent-assisted antisolvent precipitation. Critically, Fe-TMPP is TME-responsive (TME = tumor microenvironment), and can only elicit its function in the TME with overexpressed H2O2, converting H2O2 to the cytotoxic •OH to oxidize the phospholipid of the cancer cell membrane, causing ferroptosis, a programmed cell death process of cancer cells.


Asunto(s)
Antineoplásicos , Ferroptosis , Nanomedicina , Humanos , Ferroptosis/efectos de los fármacos , Línea Celular Tumoral , Nanomedicina/métodos , Antineoplásicos/farmacología , Antineoplásicos/química , Nanopartículas/química , Compuestos Férricos/química , Microambiente Tumoral/efectos de los fármacos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/farmacología , Supervivencia Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología
12.
Angew Chem Int Ed Engl ; : e202415496, 2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39494965

RESUMEN

We report the photocatalytic oxidation of α-carbonyl radicals of amides or esters to the corresponding α-carbonyl carbocations through super photoreductant CBZ6 induced redox-neutral photocatalysis. The α-carbonyl radicals are formed by the ß-addition of alkyl radicals generated in situ by the photocatalytic fragmentation of N-hydroxyphthalimide esters to the α,ß-unsaturated amides and esters. This method enables the α-nucleophilic addition of hydroxyl or alkoxyl radicals to amides and esters without any prefunctionalization.

13.
Anal Chem ; 95(40): 15025-15032, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37769140

RESUMEN

Accurate and specific imaging of low-abundance microRNA (miRNA) in living cells is extremely important for disease diagnosis and monitoring of disease progression. DNA nanomotors have shown great potential for imaging molecules of interest in living cells. However, inappropriate driving forces and complex design and operation procedures have hindered their further application. Here, we proposed an endogenous enzyme-powered DNA nanomotor (EEPDN), which employs an endogenous APE1 enzyme as fuel to execute repetitive cycles of motion for miRNA imaging in living cells. The whole motor system is constructed based on gold nanoparticles without other auxiliary additives. Due to the high efficiency of APE1, this EEPDN system has achieved highly sensitive miRNA imaging in living cells within 1.5 h. This strategy was also successfully used to differentiate the expression of specific miRNA between tumor cells and normal cells, demonstrating a high tumor cell selectivity. This strategy can promote the development of novel nanomotors and is expected to be a perfect intracellular molecular imaging tool for biological and medical applications.


Asunto(s)
Nanopartículas del Metal , MicroARNs , MicroARNs/genética , Oro , ADN/genética , Diagnóstico por Imagen
14.
Small ; 19(50): e2304610, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37632302

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune disease commonly associated with the accumulation of hyperactive immune cells (HICs), particularly macrophages of pro-inflammatory (M1) phenotype, accompanied by the elevated level of reactive oxygen species (ROS), decreased pH and O2 content in joint synovium. In this work, an immunomodulatory nanosystem (IMN) is developed for RA therapy by modulating and restoring the function of HICs in inflamed tissues. Manganese tetraoxide nanoparticles (Mn3 O4 ) nanoparticles anchored on UiO-66-NH2 are designed, and then the hybrid is coated with Mn-EGCG film, further wrapped with HA to obtain the final nanocomposite of UiO-66-NH2 @Mn3 O4 /Mn-EGCG@HA (termed as UMnEH). When UMnEH diffuses to the inflammatory site of RA synovium, the stimulation of microwave (MW) irradiation and low pH trigger the slow dissociation of Mn-EGCG film. Then the endogenously overexpressed hydrogen peroxide (H2 O2 ) disintegrates the exposed Mn3 O4 NPs to promote ROS scavenging and O2 generation. Assisted by MW irradiation, the elevated O2 content in the RA microenvironment down-regulates the expression of hypoxia-inducible factor-1α (HIF-1α). Coupled with the clearance of ROS, it promotes the re-polarization of M1 phenotype macrophages into anti-inflammatory (M2) phenotype macrophages. Therefore, the multifunctional UMnEH nanoplatform, as the IMN, exhibits a promising potential to modulate and restore the function of HICs and has an exciting prospect in the treatment of RA.


Asunto(s)
Artritis Reumatoide , Nanocompuestos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Manganeso , Catalasa , Microondas , Artritis Reumatoide/tratamiento farmacológico , Oxígeno/metabolismo
15.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34226915

RESUMEN

Pseudouridine is a ubiquitous RNA modification type present in eukaryotes and prokaryotes, which plays a vital role in various biological processes. Almost all kinds of RNAs are subject to this modification. However, it remains a great challenge to identify pseudouridine sites via experimental approaches, requiring expensive and time-consuming experimental research. Therefore, computational approaches that can be used to perform accurate in silico identification of pseudouridine sites from the large amount of RNA sequence data are highly desirable and can aid in the functional elucidation of this critical modification. Here, we propose a new computational approach, termed Porpoise, to accurately identify pseudouridine sites from RNA sequence data. Porpoise builds upon a comprehensive evaluation of 18 frequently used feature encoding schemes based on the selection of four types of features, including binary features, pseudo k-tuple composition, nucleotide chemical property and position-specific trinucleotide propensity based on single-strand (PSTNPss). The selected features are fed into the stacked ensemble learning framework to enable the construction of an effective stacked model. Both cross-validation tests on the benchmark dataset and independent tests show that Porpoise achieves superior predictive performance than several state-of-the-art approaches. The application of model interpretation tools demonstrates the importance of PSTNPs for the performance of the trained models. This new method is anticipated to facilitate community-wide efforts to identify putative pseudouridine sites and formulate novel testable biological hypothesis.


Asunto(s)
Biología Computacional/métodos , Seudouridina/química , ARN/química , ARN/genética , Algoritmos , Aprendizaje Automático , Seudouridina/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/métodos
16.
Brief Bioinform ; 22(2): 2126-2140, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-32363397

RESUMEN

Promoters are short consensus sequences of DNA, which are responsible for transcription activation or the repression of all genes. There are many types of promoters in bacteria with important roles in initiating gene transcription. Therefore, solving promoter-identification problems has important implications for improving the understanding of their functions. To this end, computational methods targeting promoter classification have been established; however, their performance remains unsatisfactory. In this study, we present a novel stacked-ensemble approach (termed SELECTOR) for identifying both promoters and their respective classification. SELECTOR combined the composition of k-spaced nucleic acid pairs, parallel correlation pseudo-dinucleotide composition, position-specific trinucleotide propensity based on single-strand, and DNA strand features and using five popular tree-based ensemble learning algorithms to build a stacked model. Both 5-fold cross-validation tests using benchmark datasets and independent tests using the newly collected independent test dataset showed that SELECTOR outperformed state-of-the-art methods in both general and specific types of promoter prediction in Escherichia coli. Furthermore, this novel framework provides essential interpretations that aid understanding of model success by leveraging the powerful Shapley Additive exPlanation algorithm, thereby highlighting the most important features relevant for predicting both general and specific types of promoters and overcoming the limitations of existing 'Black-box' approaches that are unable to reveal causal relationships from large amounts of initially encoded features.


Asunto(s)
Escherichia coli/genética , Aprendizaje Automático , Regiones Promotoras Genéticas , Conjuntos de Datos como Asunto , Genes Bacterianos , Reproducibilidad de los Resultados
17.
Brief Bioinform ; 22(3)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32608476

RESUMEN

DNA N4-methylcytosine (4mC) is an important epigenetic modification that plays a vital role in regulating DNA replication and expression. However, it is challenging to detect 4mC sites through experimental methods, which are time-consuming and costly. Thus, computational tools that can identify 4mC sites would be very useful for understanding the mechanism of this important type of DNA modification. Several machine learning-based 4mC predictors have been proposed in the past 3 years, although their performance is unsatisfactory. Deep learning is a promising technique for the development of more accurate 4mC site predictions. In this work, we propose a deep learning-based approach, called DeepTorrent, for improved prediction of 4mC sites from DNA sequences. It combines four different feature encoding schemes to encode raw DNA sequences and employs multi-layer convolutional neural networks with an inception module integrated with bidirectional long short-term memory to effectively learn the higher-order feature representations. Dimension reduction and concatenated feature maps from the filters of different sizes are then applied to the inception module. In addition, an attention mechanism and transfer learning techniques are also employed to train the robust predictor. Extensive benchmarking experiments demonstrate that DeepTorrent significantly improves the performance of 4mC site prediction compared with several state-of-the-art methods.


Asunto(s)
Metilación de ADN/genética , ADN/genética , Aprendizaje Profundo , Epigénesis Genética
18.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33316035

RESUMEN

Anti-cancer peptides (ACPs) are known as potential therapeutics for cancer. Due to their unique ability to target cancer cells without affecting healthy cells directly, they have been extensively studied. Many peptide-based drugs are currently evaluated in the preclinical and clinical trials. Accurate identification of ACPs has received considerable attention in recent years; as such, a number of machine learning-based methods for in silico identification of ACPs have been developed. These methods promote the research on the mechanism of ACPs therapeutics against cancer to some extent. There is a vast difference in these methods in terms of their training/testing datasets, machine learning algorithms, feature encoding schemes, feature selection methods and evaluation strategies used. Therefore, it is desirable to summarize the advantages and disadvantages of the existing methods, provide useful insights and suggestions for the development and improvement of novel computational tools to characterize and identify ACPs. With this in mind, we firstly comprehensively investigate 16 state-of-the-art predictors for ACPs in terms of their core algorithms, feature encoding schemes, performance evaluation metrics and webserver/software usability. Then, comprehensive performance assessment is conducted to evaluate the robustness and scalability of the existing predictors using a well-prepared benchmark dataset. We provide potential strategies for the model performance improvement. Moreover, we propose a novel ensemble learning framework, termed ACPredStackL, for the accurate identification of ACPs. ACPredStackL is developed based on the stacking ensemble strategy combined with SVM, Naïve Bayesian, lightGBM and KNN. Empirical benchmarking experiments against the state-of-the-art methods demonstrate that ACPredStackL achieves a comparative performance for predicting ACPs. The webserver and source code of ACPredStackL is freely available at http://bigdata.biocie.cn/ACPredStackL/ and https://github.com/liangxiaoq/ACPredStackL, respectively.


Asunto(s)
Antineoplásicos , Aprendizaje Automático , Neoplasias , Programas Informáticos , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Péptidos/química , Péptidos/genética , Péptidos/uso terapéutico
19.
Phys Chem Chem Phys ; 25(8): 6295-6305, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36762600

RESUMEN

In recent years, iron-based ionic liquids (e.g. BmimFeCl4, Fe-IL) have been widely used in the catalytic oxidation removal of hydrogen sulfide owing to their excellent redox reversibility and stability. Nevertheless, the high viscosity and poor Fe3+ activity of BmimFeCl4 limit its large-scale industrial application. The addition of aprotic organic solvents to BmimFeCl4 is an effective strategy to enhance its mass transfer efficiency and catalytic oxidation desulfurization performance. In this work, the effects of two kinds of aprotic organic solvents, weak polar polyether alcohols (NHD, PEG200) and strong polar amides (DMAC, DMF, and NMP), on the density, viscosity, conductivity and ferric activity of Fe-IL were investigated. The Eyring equation fitted well for the relationship between the viscosity and the temperature of the composites. When the mass ratio of BmimFeCl4 to solvent was 7 : 3 at 298.2 K, the viscosity of BmimFeCl4/DMAC and BmimFeCl4/NHD was 8.67 mPa s and 27.19 mPa s, respectively. The excess molar volume (VE) and viscosity deviation (Δη) of the two composite systems were calculated and fitted using the Redlich-Kister equation. The study of VE implies that DMAC has stronger solvation to the BmimFeCl4 ion pairs, and NHD could cause a more obvious volume shrinkage. For the composites investigated, Δη of BmimFeCl4/DMAC is negative while that of BmimFeCl4/NHD is positive, showing that DMAC could significantly weaken the combination ability of [Bmim]+ and [FeCl4]-, and NHD may form a stronger interaction with [Bmim]+. The FT-IR spectra and DFT calculations demonstrated that both polyether alcohol and amide could interact with C2-H on [Bmim]+. The CV curves and the MK charges show that the addition of aprotic polar solvents could effectively improve the activity of Fe3+ under the action of a hydrogen bond, and the effect of amide solvents on the activation of Fe3+ is stronger than that of polyether alcohol solvents. In conclusion, it is found that the composites with stronger ferric activity have much better catalytic oxidation ability for the conversion performance of hydrogen sulfide, and the the interactions induced by the molecular weight and the polarity of the solvent have a significant effect on the configuration of the Fe-IL ion pairs.

20.
J Nanobiotechnology ; 21(1): 18, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650517

RESUMEN

The occurrence of osteoarthritis (OA) is highly correlated with the reduction of joint lubrication performance, in which persistent excessive inflammation and irreversible destruction of cartilage dominate the mechanism. The inadequate response to monotherapy methods, suboptimal efficacy caused by undesirable bioavailability, short retention, and lack of stimulus-responsiveness, are few unresolved issues. Herein, we report a pH-responsive metal-organic framework (MOF), namely, MIL-101-NH2, for the co-delivery of anti-inflammatory drug curcumin (CCM) and small interfering RNA (siRNA) for hypoxia inducible factor (HIF-2α). CCM and siRNA were loaded via encapsulation and surface coordination ability of MIL-101-NH2. Our vitro tests showed that MIL-101-NH2 protected siRNA from nuclease degradation by lysosomal escape. The pH-responsive MIL-101-NH2 gradually collapsed in an acidic OA microenvironment to release the CCM payloads to down-regulate the level of pro-inflammatory cytokines, and to release the siRNA payloads to cleave the target HIF-2α mRNA for gene-silencing therapy, ultimately exhibiting the synergetic therapeutic efficacy by silencing HIF-2α genes accompanied by inhibiting the inflammation response and cartilage degeneration of OA. The hybrid material reported herein exhibited promising potential performance for OA therapy as supported by both in vitro and in vivo studies and may offer an efficacious therapeutic strategy for OA utilizing MOFs as host materials.


Asunto(s)
Curcumina , Estructuras Metalorgánicas , Osteoartritis , Humanos , Curcumina/farmacología , Condrocitos/metabolismo , ARN Interferente Pequeño/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Inflamación/metabolismo , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA