Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(4): 046401, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36763438

RESUMEN

Spin-momentum coupling, which depends strongly on the relativistic effect of heavy elements in solids, is the basis of many phenomena in spintronics. In this Letter, we theoretically predict nonrelativistic spin-momentum coupling in two-dimensional materials. By proposing magnetic symmetry requirements for spin splitting in two-dimensional systems, we find that a simple twisting operation can realize nonrelativistic spin splitting in antiferromagnetic bilayers. Through first-principles calculations, we demonstrate that momentum-dependent spin splitting exists extensively in antiferromagnetic twisted bilayers with different crystal structures and twist angles. The size of the spin splitting caused by twisting is of the same order of magnitude as that arising from spin-orbit coupling. In particular, a transverse spin current with an extremely high charge-spin conversion ratio can be generated in twisted structures under an external electric field. The findings demonstrate the potential for achieving electrically controlled magnetism in materials without spin-orbit coupling.

2.
Phys Chem Chem Phys ; 25(10): 7519-7526, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36853620

RESUMEN

Carrier mobility in titanium dioxide (TiO2) systems is a key factor for their application as energy materials, especially in solar cells and lithium-ion batteries. Studies on the diffusion of Li-ions and polarons in rutile TiO2 systems have attracted extensive attention. However, how their interaction affects the diffusion of Li-ions and electron polarons is largely unclear and related studies are relatively lacking. By using first-principles calculations, we systematically investigate the interaction between the intercalated Li-ions and electron polarons in rutile TiO2 materials. Our analysis shows that the diffusion barrier of the electron polarons decreases around the Li-ion. The interaction between the Li-ions and polarons would benefit their synergistic diffusion both in the pristine and defective rutile TiO2 systems. Our study reveals the synergistic effects between the ions and polarons, which is important for understanding the carrier properties in TiO2 systems and in further improving the performance of energy materials.

3.
Nano Lett ; 22(5): 1858-1865, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35174707

RESUMEN

Understanding the origin of charge-density wave (CDW) instability is important for manipulating novel collective electronic states. Many layered transition metal dichalcogenides (TMDs) share similarity in the structural and electronic instability, giving rise to diverse CDW phases and superconductivity. It is still puzzling that even isostructural and isoelectronic TMDs show distinct CDW features. For instance, bulk NbSe2 exhibits CDW order at low temperature, while bulk NbS2 displays no CDW instability. The CDW transitions in single-layer NbS2 and NbSe2 are also different. In the classic limit, we investigate the electron correlation effects on the dimensionality dependence of the CDW ordering. By performing ab initio path integral molecular dynamics simulations and comparative analyses, we further revealed significant nuclear quantum effects in these systems. Specifically, the quantum motion of sulfur anions significantly reduces the CDW transition temperature in both bulk and single-layer NbS2, resulting in distinct CDW features in the NbS2 and NbSe2 systems.

4.
Phys Chem Chem Phys ; 24(28): 17323-17328, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35815879

RESUMEN

Revealing the origin of self-trapped excitons is a prerequisite for further improving the photoluminescence efficiency of low-dimensional organic perovskites. Here, the microscopic formation mechanism of intrinsic self-trapped excitons in one-dimensional (1D) C4N2H14PbX4 (X = Cl, Br and I) systems is investigated, and the polarization-luminescence relationship is established. Our results show that 1D-C4N2H14PbX4 has a low electronic dimension (flat band characteristics), which facilitates the formation of intrinsic self-trapped excitons. The potential well formed by local distortion of the [PbX6] octahedron is the origin of exciton self-trapping. Combined with the electronic density of states and partial charge density, we further confirmed the existence of intrinsic self-trapping excitons in 1D-C4N2H14PbX4. In addition, we found that the breaking of the central inversion symmetry will induce electric polarization, which greatly improves the transition probability of electrons. These results could potentially offer a new direction for improving the luminescence properties of 1D organic lead halide perovskites.

5.
J Am Chem Soc ; 140(2): 570-573, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29283252

RESUMEN

We study negative differential conductance (NDC) effects in polyporphyrin oligomers with nonlinear backbones. Using a low-temperature scanning tunneling microscope, we selectively controlled the charge transport path in single oligomer wires. We observed robust NDC when charge passed through a T-shape junction, bistable NDC when charge passed through a 90° kink and no NDC when charge passed through a 120° kink. Aided by density functional theory with nonequilibrium Green's functions simulations, we attributed this backbone-dependent NDC to bias-modulated hybridization of the electrode states with the resonant transport molecular orbital. We argue this mechanism is generic in molecular systems, which opens a new route of designing molecular NDC devices.

6.
Phys Chem Chem Phys ; 20(6): 3997-4004, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29350734

RESUMEN

Although a lot of theoretical studies have designed perfect spin filters using inorganic/organic/organometallic materials, their fabrication methods are not experimentally feasible. This dilemma could be solved by a recent experiment, where porphyrins have been covalently coupled to graphene edges in a precise manner (Y. He et al., Nat. Chem., 2017, 9, 33-38). In particular, experimental results confirmed that the intrinsic features of porphyrins for metallation are preserved after dehydrogenative coupling to graphene edges, paving the way for realizing synthesizable spintronic devices. Inspired by this work, we report new M-porphyrin/graphene (M = Cr, Mn, Fe, and Co) hybrid systems with tunable functionalities on the basis of nonequilibrium Green's functions in combination with density functional theory. The Mn-porphyrin/graphene hybrid system exhibits an extremely high spin polarization coefficient in a parallel magnetic configuration. Our results also confirm that the magnetic configuration plays an important role in realizing a high-performance spin filter. The interesting spin transport properties in the parallel and antiparallel magnetic configurations also make the hybrid system a suitable candidate for realizing the AND logic operation.

7.
Phys Chem Chem Phys ; 19(14): 9417-9423, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28327774

RESUMEN

In experimental studies, magnetoresistance (MR) values of 103 are hard to reach for conventional single-molecule spin-valves. Motivated by a recent experiment [Nano Lett., 2016, 16, 577-582], where tailored Co-salophene-based all-spin molecular devices are successfully realized, we demonstrate the functionality of a Co-salophene-based spin chain without magnetic electrodes. By using nonequilibrium Green's functions in combination with density functional theory, we find that the maximum MR ratio of this spin chain can reach 106 by manipulating its spins in a controlled way, which is several orders of magnitude higher than previously reported experimental values. As the Co-salophene-based spin chain has been successfully synthesized, we are highly expectant of the experimental realization of huge MR ratios.

8.
J Phys Chem Lett ; 15(10): 2867-2875, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38446846

RESUMEN

The rapid recombination of photogenerated carriers heavily restricts the photocatalytic efficiency. Here, we propose a new strategy to improve catalytic efficiency based on the ferroelectric van der Waals heterostructure (CuBiP2Se6/C2N). Combining density functional theory and the nonadiabatic molecular dynamics (NAMD) method, we have systematically analyzed the ground-state properties and carrier dynamics images in the CuBiP2Se6/C2N heterostructure. Our calculations showed that the ferroelectric polarization of CuBiP2Se6 provides the internal driving force for the photogenerated carriers separation. NAMD results demonstrate that the excited-state carrier transfer and recombination processes in the CuBiP2Se6/C2N are consistent with a type II mechanism. Meanwhile, constructing the ferroelectric heterostructure can effectively prolong the carrier lifetime, from ∼65.98 to ∼124.54 ps. Moreover, the high quantum efficiency and tunable band edge positions mean that the CuBiP2Se6/C2N heterostructure is an excellent potential candidate material for photocatalytic water splitting.

9.
J Phys Chem Lett ; 15(13): 3611-3618, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38530095

RESUMEN

Further improving the activity and selectivity of photocatalytic CO2 reduction remains a challenge. Herein, we propose a new strategy for synergistically promoting photocatalytic CO2 reduction by combining two-dimensional (2D) ferroelectric polarization and single-atom catalysis. Our calculations showed that the ferroelectric polarization of CuBiP2Se6 provides the internal driving force for the separation and migration of photogenerated carriers, which provides a prerequisite for enhancing the photocatalytic efficiency. In addition, the introduction of single Ag atoms can act as an electron reservoir to significantly modify the bonding configurations on the surface through proper static electron transfer, thus effectively promoting the adsorption and activation of CO2 molecules. More importantly, we found that switching the ferroelectric polarization can synergistically optimize the limiting potential as well as control the final products. This study provides a new approach for enhancing the catalytic activity and selectivity of photocatalytic CO2 reduction.

10.
J Phys Condens Matter ; 35(37)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37276861

RESUMEN

In recent years, researchers have shown great interest in organic thermoelectric materials that are economical, efficient, lightweight, and environmentally friendly. With advancements in experimental measurement techniques and theoretical calculations, investigations of the thermoelectric properties of molecular devices have become feasible. To regulate the thermoelectric properties of molecular devices, many strategies have been proposed. In this work, we review the theoretical analytical and experimental research methods used to study these properties. We then focus on two tuning strategies, side substitution, and quantum interface effects, which have demonstrated significant improvements in the thermoelectric performance of molecular devices. Finally, we discuss the challenges faced in experimental and theoretical studies and the future prospects of molecular thermoelectric devices.

11.
Nanoscale ; 15(14): 6732-6737, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36939614

RESUMEN

Improving the interfacial thermal conductance (ITC) is very important for heat dissipation in microelectronic and optoelectronic devices. In this work, taking GaN-AlN contact as an example, we demonstrated a new mechanism to enhance the interfacial thermal conductance using nano-phononic metamaterials. First, how a superlattice affects the ITC is investigated, and it is found that with decreasing superlattice periodic length, the ITC first decreases and then increases, because of the coherent phonon interference effect. However, although constructing a superlattice is effective for tuning the ITC, it cannot enhance the ITC. We suggest that the ITC can be enhanced by 9% through constructing an interfacial nano phononic metamaterial, which is contributed by the additional phonon transport channels for high-frequency phonons with a wide incidence-angle range. These results not only establish a deep understanding of the fundamental physics of the interfacial thermal conductance, but also provide a robust and scalable mechanism, which provides a degree of freedom for efficient thermal management.

12.
Phys Chem Chem Phys ; 14(22): 8032-7, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22555657

RESUMEN

By applying the nonequilibrium Green's functions and the density-functional theory, we investigate the electronic structures and transport properties of fluorinated zigzag-edged boron nitride nanoribbons. The results show that the transition between half-metal and semiconductor in zigzag-edged boron nitride nanoribbons can be realized by fluorination at different sites or by the change of the fluorination level. Moreover, the negative differential resistance and varistor-type behaviors can also be observed in such fluorinated zigzag-edged boron nitride nanoribbon devices. Therefore, the fluorination of zigzag-edged boron nitride nanoribbons will provide the possibilities for a multifunctional molecular device design.

13.
J Phys Condens Matter ; 34(22)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35263716

RESUMEN

Phonon heat transport property in quantum devices is of great interesting since it presents significant quantum behaviors. In the past few decades, great efforts have been devoted to establish the theoretical method for phonon heat transport simulation in nanostructures. However, modeling phonon heat transport from wavelike coherent regime to particlelike incoherent regime remains a challenging task. The widely adopted theoretical approach, such as molecular dynamics, semiclassical Boltzmann transport equation, captures quantum mechanical effects within different degrees of approximation. Among them, Non-equilibrium Green's function (NEGF) method has attracted wide attention, as its ability to perform full quantum simulation including many-body interactions. In this review, we summarized recent theoretical advances of phonon NEGF method and the applications on the numerical simulation for phonon heat transport in nanostructures. At last, the challenges of numerical simulation are discussed.

14.
J Phys Chem Lett ; 13(34): 8026-8032, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35993680

RESUMEN

The antimony trisulfide (Sb2S3) has been theoretically predicted to have various merits in exploiting high-performance thin-film solar cells and attracted intense attention. However, the power conversion efficiency of Sb2S3-based solar cells is yet to be satisfactory in experiments and the origin of large open circuit voltage (VOC) loss is still a controversial question. Based on first-principles calculations, we have systematically analyzed the excited state behavior and dynamics images of carriers in Sb2S3 materials. Our calculations showed that intrinsic defects like vacancy (VSb and VS) and antisites (SbS and SSb) are energetically accessible. More importantly, we found that the sulfide vacancy-bound excitons can produce a large Stokes shift of ∼0.66 eV, which could well rationalize the experimental observations like the reduction of VOC. These new findings suggest that the performance of Sb2S3-based solar cells might be largely enhanced by avoiding sulfide vacancy defects.

15.
J Phys Condens Matter ; 34(28)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35477168

RESUMEN

The design and control of spintronic devices is a research hotspot in the field of electronics, and pure carbon-based materials provide new opportunities for the construction of electronic devices with excellent performance. Using density functional theory in combination with nonequilibrium Green's functions method, we design spin filter devices based on Penta-hexa-graphene (PHG) nanoribbons-a carbon nanomaterial in which the intrinsic magnetic moments combines with edge effects leading to a half-metallic property. Spin-resolved electronic transport studies show that such carbon-based devices can achieve nearly 100% spin filtering effect at low bias voltages. Such SEF can resist the influence of hydrogen passivation at different positions, but hardly survive under a hydrogen-rich environment. Our analysis show that the perfect SEF transport properties are caused by the magnetic and electronic properties of PHG nanoribbons, especially the magnetic moments on the quasi-sp3carbons. These interesting results indicate that PHG nanomaterials have very prominent application prospects in future spintronic devices.

16.
Appl Opt ; 50(31): 5938-43, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22086017

RESUMEN

An improved approach called the weighted YG algorithm for the design of the diffractive phase element (DPE) that implements beam shaping in the fractional Fourier transform domain and free space is presented. Modeling designs of the DPE are carried out for several fractional orders and different parameters of the beam for optimally converting a Gaussian profile into a uniform beam. We found that our algorithm can improve the beam shaping effect, reduce the error function, and increase uniformity of light intensity.

17.
J Phys Condens Matter ; 33(40)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34261050

RESUMEN

Ultrathin ferroelectrics are of great technological interest for high-density electronics, particularly non-volatile memories and field-effect transistors. With the rapid development of micro-electronics technology, there is an urgent requirement for higher density electronic devices, which need ultra-thin ferroelectric materials films. However, as ferroelectric films have becomes thinner and thinner, electrical spontaneous polarization signals have been found in a few atomic layers or even monolayer structures. The mechanisms of detection and formation of these signals are not well understood and various controversial interpretations have emerged. In this review, we summarized the recent research progress in the ultra-thin film ferroelectric material, such as HfO2, CuInP2S6, In2Se3, MoTe2and BaTiO3. Various key aspects of ferroelectric materials are discussed, including crystal structure, ferroelectric mechanism, characterization, fabrication methods, applications, and future outlooks. We hope this review will offer ideas for further improvement of ferroelectric properties of ultra-thin films and promotes practical applications.

18.
ACS Omega ; 6(20): 13124-13133, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34056462

RESUMEN

On the basis of density functional theory calculations, we explored the catalytic properties of various heteroatom-doped black and gray arsenene toward the oxygen reduction reaction (ORR), the oxygen evolution reaction (OER), and the hydrogen evolution reaction (HER). The calculation results show that pristine black (b-As) and gray arsenene (g-As) exhibit poor catalytic performance because of too weak intermediate adsorption. Heteroatom doping plays a key role in optimizing catalytic performance. Among the candidate dopants O, C, P, S, and Sb, O is the most promising one used in arsenene to improve the ORR and OER catalytic performance. Embedding O atoms could widely tune the binding strength of reactive intermediates and improve the catalytic activity. Single O-doped g-AsO 1 can achieve efficient bifunctional activity for both the OER and the ORR with optimal potential gap. b-AsO 1 and b-AsO 2 exhibit the optimal OER and ORR catalytic performance, respectively. For the HER, double C-doped g-AsC 2 could tune the adsorption of hydrogen to an optimal value and significantly enhance the catalytic performance. These findings indicate that arsenene could provide a new platform to explore high-efficiency electrocatalysts.

19.
Nat Commun ; 12(1): 2018, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795697

RESUMEN

There is an emergent demand for high-flexibility, high-sensitivity and low-power strain gauges capable of sensing small deformations and vibrations in extreme conditions. Enhancing the gauge factor remains one of the greatest challenges for strain sensors. This is typically limited to below 300 and set when the sensor is fabricated. We report a strategy to tune and enhance the gauge factor of strain sensors based on Van der Waals materials by tuning the carrier mobility and concentration through an interplay of piezoelectric and photoelectric effects. For a SnS2 sensor we report a gauge factor up to 3933, and the ability to tune it over a large range, from 23 to 3933. Results from SnS2, GaSe, GeSe, monolayer WSe2, and monolayer MoSe2 sensors suggest that this is a universal phenomenon for Van der Waals semiconductors. We also provide proof of concept demonstrations by detecting vibrations caused by sound and capturing body movements.

20.
J Phys Condens Matter ; 32(15): 153002, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-31796650

RESUMEN

The diversity of thermal transport properties in carbon nanomaterials enables them to be used in different thermal fields such as heat dissipation, thermal management, and thermoelectric conversion. In the past two decades, much effort has been devoted to study the thermal conductivities of different carbon nanomaterials. In this review, different theoretical methods and experimental techniques for investigating thermal transport in nanosystems are first summarized. Then, the thermal transport properties of various pure carbon nanomaterials including 1D carbon nanotubes, 2D graphene, 3D carbon foam, are reviewed in details and the associated underlying physical mechanisms are presented. Meanwhile, we discuss several important influences on the thermal conductivities of carbon nanomaterials, including size, structural defects, chemisorption and strain. Moreover, we introduce different nanostructuring pathways to manipulate the thermal conductivities of carbon-based nanocomposites and focus on the wave nature of phonons for controlling thermal transport. At last, we briefly review the potential applications of carbon nanomaterials in the fields of thermal devices and thermoelectric conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA