RESUMEN
Interferon-α (IFNα) signaling is essential for antiviral response via induction of IFN-stimulated genes (ISGs). Through a non-biased high-throughput RNAi screening of 711 known epigenetic modifiers in cellular models of IFNα-mediated inhibition of HBV replication, we identified methyltransferase SETD2 as a critical amplifier of IFNα-mediated antiviral immunity. Conditional knockout mice with hepatocyte-specific deletion of Setd2 exhibit enhanced HBV infection. Mechanistically, SETD2 directly mediates STAT1 methylation on lysine 525 via its methyltransferase activity, which reinforces IFN-activated STAT1 phosphorylation and antiviral cellular response. In addition, SETD2 selectively catalyzes the tri-methylation of H3K36 on promoters of some ISGs such as ISG15, leading to gene activation. Our study identifies STAT1 methylation on K525 catalyzed by the methyltransferase SETD2 as an essential signaling event for IFNα-dependent antiviral immunity and indicates potential of SETD2 in controlling viral infections.
Asunto(s)
Virus de la Hepatitis B/fisiología , Hepatitis B Crónica/inmunología , N-Metiltransferasa de Histona-Lisina/metabolismo , Interferón-alfa/inmunología , Factor de Transcripción STAT1/genética , Animales , Línea Celular , Línea Celular Tumoral , Epigénesis Genética , Hepatitis B Crónica/virología , Hepatocitos/metabolismo , Histonas/metabolismo , Humanos , Ratones , Fosforilación , Dominios Proteicos , Interferencia de ARN , Transcripción Genética , Replicación ViralRESUMEN
In lactating mothers, the high calcium (Ca2+) demand for milk production triggers significant bone loss1. Although oestrogen normally counteracts excessive bone resorption by promoting bone formation, this sex steroid drops precipitously during this postpartum period. Here we report that brain-derived cellular communication network factor 3 (CCN3) secreted from KISS1 neurons of the arcuate nucleus (ARCKISS1) fills this void and functions as a potent osteoanabolic factor to build bone in lactating females. We began by showing that our previously reported female-specific, dense bone phenotype2 originates from a humoral factor that promotes bone mass and acts on skeletal stem cells to increase their frequency and osteochondrogenic potential. This circulatory factor was then identified as CCN3, a brain-derived hormone from ARCKISS1 neurons that is able to stimulate mouse and human skeletal stem cell activity, increase bone remodelling and accelerate fracture repair in young and old mice of both sexes. The role of CCN3 in normal female physiology was revealed after detecting a burst of CCN3 expression in ARCKISS1 neurons coincident with lactation. After reducing CCN3 in ARCKISS1 neurons, lactating mothers lost bone and failed to sustain their progeny when challenged with a low-calcium diet. Our findings establish CCN3 as a potentially new therapeutic osteoanabolic hormone for both sexes and define a new maternal brain hormone for ensuring species survival in mammals.
Asunto(s)
Densidad Ósea , Huesos , Encéfalo , Hormonas , Madres , Proteína Hiperexpresada del Nefroblastoma , Osteogénesis , Adolescente , Animales , Femenino , Humanos , Masculino , Ratones , Envejecimiento , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/metabolismo , Huesos/citología , Huesos/metabolismo , Remodelación Ósea , Resorción Ósea/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Calcio/administración & dosificación , Calcio/metabolismo , Lactancia/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Células Madre/metabolismo , Células Madre/citología , Proteína Hiperexpresada del Nefroblastoma/metabolismo , Hormonas/metabolismoRESUMEN
Arrestins have pivotal roles in regulating G protein-coupled receptor (GPCR) signalling by desensitizing G protein activation and mediating receptor internalization1,2. It has been proposed that the arrestin binds to the receptor in two different conformations, 'tail' and 'core', which were suggested to govern distinct processes of receptor signalling and trafficking3,4. However, little structural information is available for the tail engagement of the arrestins. Here we report two structures of the glucagon receptor (GCGR) bound to ß-arrestin 1 (ßarr1) in glucagon-bound and ligand-free states. These structures reveal a receptor tail-engaged binding mode of ßarr1 with many unique features, to our knowledge, not previously observed. Helix VIII, instead of the receptor core, has a major role in accommodating ßarr1 by forming extensive interactions with the central crest of ßarr1. The tail-binding pose is further defined by a close proximity between the ßarr1 C-edge and the receptor helical bundle, and stabilized by a phosphoinositide derivative that bridges ßarr1 with helices I and VIII of GCGR. Lacking any contact with the arrestin, the receptor core is in an inactive state and loosely binds to glucagon. Further functional studies suggest that the tail conformation of GCGR-ßarr governs ßarr recruitment at the plasma membrane and endocytosis of GCGR, and provides a molecular basis for the receptor forming a super-complex simultaneously with G protein and ßarr to promote sustained signalling within endosomes. These findings extend our knowledge about the arrestin-mediated modulation of GPCR functionalities.
Asunto(s)
Receptores de Glucagón , beta-Arrestina 1 , beta-Arrestina 1/química , beta-Arrestina 1/metabolismo , Membrana Celular/metabolismo , Endocitosis , Endosomas/metabolismo , Glucagón/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Ligandos , Fosfatidilinositoles/metabolismo , Receptores de Glucagón/química , Receptores de Glucagón/metabolismo , Unión ProteicaRESUMEN
CCR7 chemokine receptor stimulation induces rapid but transient dendritic cell (DC) migration toward draining lymph nodes, which is critical for the initiation of protective immunity and maintenance of immune homeostasis. The mechanisms for terminating CCR7-mediated DC migration remain incompletely understood. Here we have identified a long non-coding RNA lnc-Dpf3 whose feedback restrained CCR7-mediated DC migration. CCR7 stimulation upregulated lnc-Dpf3 via removing N6-methyladenosine (m6A) modification to prevent RNA degradation. DC-specific lnc-Dpf3 deficiency increased CCR7-mediated DC migration, leading to exaggerated adaptive immune responses and inflammatory injuries. Mechanistically, CCR7 stimulation activated the HIF-1α transcription factor pathway in DCs, leading to metabolic reprogramming toward glycolysis for DC migration. lnc-Dpf3 directly bound to HIF-1α and suppressed HIF-1α-dependent transcription of the glycolytic gene Ldha, thus inhibiting DC glycolytic metabolism and migratory capacity. We demonstrate a critical role for CCR7-inducible lnc-Dpf3 in coupling epigenetic and metabolic pathways to feedback-control DC migration and inflammatory responses.
Asunto(s)
Movimiento Celular/genética , Proteínas de Unión al ADN/genética , Glucólisis/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Receptores CCR7/genética , Factores de Transcripción/genética , Inmunidad Adaptativa/genética , Animales , Línea Celular , Células Dendríticas/patología , Epigénesis Genética/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Inflamación/genética , Inflamación/patología , Ganglios Linfáticos/patología , Redes y Vías Metabólicas/genética , Ratones , Ratones Endogámicos C57BL , Transcripción Genética/genética , Regulación hacia Arriba/genéticaRESUMEN
Coordinated metabolic reprogramming and epigenetic remodeling are critical for modulating T cell function and differentiation. However, how the epigenetic modification controls Th17/Treg cell balance via metabolic reprogramming remains obscure. Here, we find that Setd2, a histone H3K36 trimethyltransferase, suppresses Th17 development but promotes iTreg cell polarization via phospholipid remodeling. Mechanistically, Setd2 up-regulates transcriptional expression of lysophosphatidylcholine acyltransferase 4 (Lpcat4) via directly catalyzing H3K36me3 of Lpcat4 gene promoter in T cells. Lpcat4-mediated phosphatidylcholine PC(16:0,18:2) generation in turn limits endoplasmic reticulum stress and oxidative stress. These changes decrease HIF-1α transcriptional activity and thus suppress Th17 but enhance Treg development. Consistent with this regulatory paradigm, T cell deficiency of Setd2 aggravates neuroinflammation and demyelination in experimental autoimmune encephalomyelitis due to imbalanced Th17/Treg cell differentiation. Overall, our data reveal that Setd2 acts as an epigenetic brake for T cell-mediated autoimmunity through phospholipid remodeling, suggesting potential targets for treating neuroinflammatory diseases.
Asunto(s)
Enfermedades Autoinmunes , Fosfolípidos , Humanos , Histonas/genética , Histonas/metabolismo , Diferenciación Celular , Linfocitos T/metabolismoRESUMEN
Excessive activation of dendritic cells (DCs) leads to the development of autoimmune and inflammatory diseases, which has prompted a search for regulators of DC activation. Here we report that Rhbdd3, a member of the rhomboid family of proteases, suppressed the activation of DCs and production of interleukin 6 (IL-6) triggered by Toll-like receptors (TLRs). Rhbdd3-deficient mice spontaneously developed autoimmune diseases characterized by an increased abundance of the TH17 subset of helper T cells and decreased number of regulatory T cells due to the increase in IL-6 from DCs. Rhbdd3 directly bound to Lys27 (K27)-linked polyubiquitin chains on Lys302 of the modulator NEMO (IKKγ) via the ubiquitin-binding-association (UBA) domain in endosomes. Rhbdd3 further recruited the deubiquitinase A20 via K27-linked polyubiquitin chains on Lys268 to inhibit K63-linked polyubiquitination of NEMO and thus suppressed activation of the transcription factor NF-κB in DCs. Our data identify Rhbdd3 as a critical regulator of DC activation and indicate K27-linked polyubiquitination is a potent ubiquitin-linked pattern involved in the control of autoimmunity.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Autoinmunidad , Células Dendríticas/inmunología , Interleucina-6/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ubiquitinación , Animales , Interleucina-6/antagonistas & inhibidores , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/fisiología , Estructura Terciaria de Proteína , Linfocitos T/inmunología , Receptores Toll-Like/fisiologíaRESUMEN
Apurinic/apyrimidinic (AP) sites are one of the most abundant DNA lesions and are mainly repaired by AP endonucleases (APEs). While most eukaryotic genomes encode two APEs, plants usually possess three APEs, namely APE1L, APE2, and ARP. To date, the biological relevance and functional divergence of plant APEs are unclear. Here, we show that the three plant APEs have ancient origins, with the APE1L clade being plant-specific. In Arabidopsis thaliana, simultaneously mutating APE1L and APE2, but not ARP alone or in combination with either APE1L or APE2, results in clear developmental defects linked to genotoxic stress. Genetic analyses indicated that the three plant APEs have different substrate preferences in vivo. ARP is mainly responsible for AP site repair, while APE1L and APE2 prefer to repair 3'-blocked single-stranded DNA breaks. We further determined that APEs play an important role in DNA repair and the maintenance of genomic integrity in meiotic cells. The ape1l ape2 double mutant exhibited a greatly enhanced frequency of sporulation 1 (SPO11-1)-dependent and SPO11-1-independent double-stranded DNA breaks. The DNA damage response (DDR) was activated in ape1l ape2 to trigger pollen abortion. Our findings suggest functional divergence of plant APEs and reveal important roles of plant APEs during vegetative and reproductive development.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hominidae , Animales , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Reparación del ADN/genética , Daño del ADN/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Endonucleasas/genética , Hominidae/metabolismo , Proteínas de Arabidopsis/genéticaRESUMEN
We have previously reported that the cortical bone thinning seen in mice lacking the Wnt signaling antagonist Sfrp4 is due in part to impaired periosteal apposition. The periosteum contains cells which function as a reservoir of stem cells and contribute to cortical bone expansion, homeostasis, and repair. However, the local or paracrine factors that govern stem cells within the periosteal niche remain elusive. Cathepsin K (Ctsk), together with additional stem cell surface markers, marks a subset of periosteal stem cells (PSCs) which possess self-renewal ability and inducible multipotency. Sfrp4 is expressed in periosteal Ctsk-lineage cells, and Sfrp4 global deletion decreases the pool of PSCs, impairs their clonal multipotency for differentiation into osteoblasts and chondrocytes and formation of bone organoids. Bulk RNA sequencing analysis of Ctsk-lineage PSCs demonstrated that Sfrp4 deletion down-regulates signaling pathways associated with skeletal development, positive regulation of bone mineralization, and wound healing. Supporting these findings, Sfrp4 deletion hampers the periosteal response to bone injury and impairs Ctsk-lineage periosteal cell recruitment. Ctsk-lineage PSCs express the PTH receptor and PTH treatment increases the % of PSCs, a response not seen in the absence of Sfrp4. Importantly, in the absence of Sfrp4, PTH-dependent increase in cortical thickness and periosteal bone formation is markedly impaired. Thus, this study provides insights into the regulation of a specific population of periosteal cells by a secreted local factor, and shows a central role for Sfrp4 in the regulation of Ctsk-lineage periosteal stem cell differentiation and function.
Asunto(s)
Osteogénesis , Nicho de Células Madre , Ratones , Animales , Catepsina K/metabolismo , Periostio/metabolismo , Diferenciación Celular/genética , Vía de Señalización Wnt , Proteínas Proto-Oncogénicas/metabolismoRESUMEN
BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a common heritable heart disease. Although HCM has been reported to be associated with many variants of genes involved in sarcomeric protein biomechanics, pathogenic genes have not been identified in patients with partial HCM. FARS2 (the mitochondrial phenylalanyl-tRNA synthetase), a type of mitochondrial aminoacyl-tRNA synthetase, plays a role in the mitochondrial translation machinery. Several variants of FARS2 have been suggested to cause neurological disorders; however, FARS2-associated diseases involving other organs have not been reported. We identified FARS2 as a potential novel pathogenic gene in cardiomyopathy and investigated its effects on mitochondrial homeostasis and the cardiomyopathy phenotype. METHODS: FARS2 variants in patients with HCM were identified using whole-exome sequencing, Sanger sequencing, molecular docking analyses, and cell model investigation. Fars2 conditional mutant (p.R415L) or knockout mice, fars2-knockdown zebrafish, and Fars2-knockdown neonatal rat ventricular myocytes were engineered to construct FARS2 deficiency models both in vivo and in vitro. The effects of FARS2 and its role in mitochondrial homeostasis were subsequently evaluated using RNA sequencing and mitochondrial functional analyses. Myocardial tissues from patients were used for further verification. RESULTS: We identified 7 unreported FARS2 variants in patients with HCM. Heart-specific Fars2-deficient mice presented cardiac hypertrophy, left ventricular dilation, progressive heart failure accompanied by myocardial and mitochondrial dysfunction, and a short life span. Heterozygous cardiac-specific Fars2R415L mice displayed a tendency to cardiac hypertrophy at age 4 weeks, accompanied by myocardial dysfunction. In addition, fars2-knockdown zebrafish presented pericardial edema and heart failure. FARS2 deficiency impaired mitochondrial homeostasis by directly blocking the aminoacylation of mt-tRNAPhe and inhibiting the synthesis of mitochondrial proteins, ultimately contributing to an imbalanced mitochondrial quality control system by accelerating mitochondrial hyperfragmentation and disrupting mitochondrion-related autophagy. Interfering with the mitochondrial quality control system using adeno-associated virus 9 or specific inhibitors mitigated the cardiac and mitochondrial dysfunction triggered by FARS2 deficiency by restoring mitochondrial homeostasis. CONCLUSIONS: Our findings unveil the previously unrecognized role of FARS2 in heart and mitochondrial homeostasis. This study may provide new insights into the molecular diagnosis and prevention of heritable cardiomyopathy as well as therapeutic options for FARS2-associated cardiomyopathy.
Asunto(s)
Cardiomiopatía Hipertrófica , Insuficiencia Cardíaca , Enfermedades Mitocondriales , Fenilalanina-ARNt Ligasa , Animales , Humanos , Recién Nacido , Ratones , Ratas , Cardiomiopatía Hipertrófica/patología , Insuficiencia Cardíaca/patología , Homeostasis , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/metabolismo , Simulación del Acoplamiento Molecular , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/metabolismo , Pez Cebra/genética , MutaciónRESUMEN
Drought is a major adverse environmental factor that plants face in nature but the molecular mechanism by which plants transduce stress signals and further endow themselves with tolerance remains unclear. Malectin/malectin-like domains containing receptor-like kinases (MRLKs) have been proposed to act as receptors in multiple biological signaling pathways, but limited studies show their roles in drought-stress signaling and tolerance. In this study, we demonstrate OsMRLK63 in rice (Oryza sativa L.) functions in drought tolerance by acting as the receptor of 2 rapid alkalization factors, OsRALF45 and OsRALF46. We show OsMRLK63 is a typical receptor-like kinase that positively regulates drought tolerance and reactive oxygen species (ROS) production. OsMRLK63 interacts with and phosphorylates several nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with the primarily phosphorylated site at Ser26 in the N-terminal of RESPIRATORY BURST OXIDASE HOMOLOGUE A (OsRbohA). The application of the 2 small signal peptides (OsRALF45/46) on rice can greatly alleviate the dehydration of plants induced by mimic drought. This function depends on the existence of OsMRLK63 and the NADPH oxidase-dependent ROS production. The 2 RALFs interact with OsMRLK63 by binding to its extracellular domain, suggesting they may act as drought/dehydration signal sensors for the OsMRLK63-mediated process. Our study reveals a OsRALF45/46-OsMRLK63-OsRbohs module which contributes to drought-stress signaling and tolerance in rice.
Asunto(s)
Oryza , Especies Reactivas de Oxígeno/metabolismo , Oryza/metabolismo , Resistencia a la Sequía , Deshidratación , Estrés Fisiológico , Plantas Modificadas Genéticamente/metabolismo , Sequías , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
Cultivated strawberry (Fragaria × ananassa) is a popular, economically important fruit. The ripening of the receptacle (pseudocarp), the main edible part, depends on endogenously produced abscisic acid (ABA) and is suppressed by the high level of auxin produced from achenes (true fruit) during early development. However, the mechanism whereby auxin regulates receptacle ripening through inhibiting ABA biosynthesis remains unclear. Here, we identified AUXIN RESPONSE FACTOR 2 (FaARF2), which showed decreased expression with reduced auxin content in the receptacle, leading to increased ABA levels and accelerated ripening. Dual-luciferase, yeast one-hybrid, and electrophoretic mobility shift assays demonstrated that FaARF2 could bind to the AuxRE element in the promoter of 9-CIS-EPOXYCAROT-ENOID DIOXYGENASE 1 (FaNCED1), a key ABA biosynthetic gene, to suppress its transcriptional activity. Transiently overexpressing FaARF2 in the receptacles decreased FaNCED1 expression and ABA levels, resulting in inhibition of receptacle ripening and of development of quality attributes, such as pigmentation, aroma, and sweetness. This inhibition caused by overexpressing FaARF2 was partially recovered by the injection of exogenous ABA; conversely, transient silencing of FaARF2 using RNA interference produced the opposite results. The negative targeting of FaNCED1 by FaARF2 is a key link between auxin-ABA interactions and regulation of strawberry ripening.
RESUMEN
Malignant ascites is a common complication resulting from the peritoneal spread of malignancies, and currently lacks effective treatments. We conducted a phase II trial (NCT04771676) to investigate the efficacy and safety of oncolytic adenovirus H101 and virotherapy-induced immune response in 25 patients with malignant ascites. Oncolytic virotherapy achieved an increased median time to repeat paracentesis of 45 days (95% confidence interval 16.5-73.5 days), compared with the preset control value of 13 days. Therapy was well-tolerated, with pyrexia, fatigue, nausea, and abdominal pain as the most common toxicities. Longitudinal single-cell profiling identified marked oncolysis, early virus replication, and enhanced CD8+ T cells-macrophages immune checkpoint crosstalk, especially in responsive patients. H101 also triggered a proliferative burst of CXCR6+ and GZMK+CD8+ T cells with promoted tumor-specific cytotoxicity. Further establishment of oncolytic virus-induced T cell expansion signature (OiTE) implicated the potential benefits for H101-responsive patients from subsequent anti-PD(L)1 therapy. Patients with upregulated immune-signaling pathways in tumor cells and a higher proportion of CLEC10A+ dendritic cells and GZMK+CD8+ T cells at baseline showed a superior response to H101 treatment. Our study demonstrates promising clinical responses and tolerability of oncolytic adenovirus in treating malignant ascites and provides insights into the relevant cellular processes following oncolytic virotherapy.
Asunto(s)
Adenoviridae , Ascitis , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Ascitis/terapia , Ascitis/etiología , Femenino , Masculino , Persona de Mediana Edad , Adenoviridae/genética , Anciano , Análisis de la Célula Individual , Linfocitos T CD8-positivos/inmunología , Adulto , Resultado del Tratamiento , Estudios Longitudinales , Replicación ViralRESUMEN
Breast cancer is the most frequent malignancy in women worldwide, and triple-negative breast cancer (TNBC) patients have the worst prognosis and highest risk of recurrence. The therapeutic strategies for TNBC are limited. It is urgent to develop new methods to enhance the efficacy of TNBC treatment. Previous studies demonstrated that D-mannose, a hexose, can enhance chemotherapy in cancer and suppress the immunopathology of autoimmune diseases. Here, we show that D-mannose can significantly facilitate TNBC treatment via degradation of PD-L1. Specifically, D-mannose can activate AMP-activated protein kinase (AMPK) to phosphorylate PD-L1 at S195, which leads to abnormal glycosylation and proteasomal degradation of PD-L1. D-mannose-mediated PD-L1 degradation promotes T cell activation and T cell killing of tumor cells. The combination of D-mannose and PD-1 blockade therapy dramatically inhibits TNBC growth and extends the lifespan of tumor-bearing mice. Moreover, D-mannose-induced PD-L1 degradation also results in messenger RNA destabilization of DNA damage repair-related genes, thereby sensitizing breast cancer cells to ionizing radiation (IR) treatment and facilitating radiotherapy of TNBC in mice. Of note, the effective level of D-mannose can be easily achieved by oral administration in mice. Our study unveils a mechanism by which D-mannose targets PD-L1 for degradation and provides methods to facilitate immunotherapy and radiotherapy in TNBC. This function of D-mannose may be useful for clinical treatment of TNBC.
Asunto(s)
Antígeno B7-H1/metabolismo , Manosa/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Antígeno B7-H1/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Factores Inmunológicos/metabolismo , Inmunoterapia/métodos , Linfocitos Infiltrantes de Tumor/metabolismo , Manosa/metabolismo , Ratones , Ratones Endogámicos BALB C , Fosforilación , Proteolisis/efectos de los fármacos , Radioterapia/métodos , Linfocitos T/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismoRESUMEN
OBJECTIVE: Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), mostly characterised by HBV integrations, is prevalent worldwide. Previous HBV studies mainly focused on a few hotspot integrations. However, the oncogenic role of the other HBV integrations remains unclear. This study aimed to elucidate HBV integration-induced tumourigenesis further. DESIGN: Here, we illuminated the genomic structures encompassing HBV integrations in 124 HCCs across ages using whole genome sequencing and Nanopore long reads. We classified a repertoire of integration patterns featured by complex genomic rearrangement. We also conducted a clustered regularly interspaced short palindromic repeat (CRISPR)-based gain-of-function genetic screen in mouse hepatocytes. We individually activated each candidate gene in the mouse model to uncover HBV integration-mediated oncogenic aberration that elicits tumourigenesis in mice. RESULTS: These HBV-mediated rearrangements are significantly enriched in a bridge-fusion-bridge pattern and interchromosomal translocations, and frequently led to a wide range of aberrations including driver copy number variations in chr 4q, 5p (TERT), 6q, 8p, 16q, 9p (CDKN2A/B), 17p (TP53) and 13q (RB1), and particularly, ultra-early amplifications in chr8q. Integrated HBV frequently contains complex structures correlated with the translocation distance. Paired breakpoints within each integration event usually exhibit different microhomology, likely mediated by different DNA repair mechanisms. HBV-mediated rearrangements significantly correlated with young age, higher HBV DNA level and TP53 mutations but were less prevalent in the patients subjected to prior antiviral therapies. Finally, we recapitulated the TONSL and TMEM65 amplification in chr8q led by HBV integration using CRISPR/Cas9 editing and demonstrated their tumourigenic potentials. CONCLUSION: HBV integrations extensively reshape genomic structures and promote hepatocarcinogenesis (graphical abstract), which may occur early in a patient's life.
Asunto(s)
Carcinoma Hepatocelular , Virus de la Hepatitis B , Neoplasias Hepáticas , Integración Viral , Carcinoma Hepatocelular/virología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , Neoplasias Hepáticas/patología , Virus de la Hepatitis B/genética , Humanos , Integración Viral/genética , Animales , Ratones , Masculino , Persona de Mediana Edad , Femenino , Adulto , Secuenciación Completa del Genoma , Variaciones en el Número de Copia de ADN , AncianoRESUMEN
Using LC-MS/MS analysis we previously showed for the first time (Carcinogenesis 43:746-753, 2022) that levels of DNA damage-induced by benzo[a]pyrene (B[a]P), an oral carcinogen and tobacco smoke (TS) constituent, were significantly higher in buccal cells of smokers than those in non-smokers; these results suggest the potential contribution of B[a]P in the development of oral squamous cell carcinoma (OSCC) in humans. Treating cancers, including OSCC at late stages even with improved targeted therapies, continues to be a major challenge. Thus interception/prevention remains a preferable approach for OSCC management and control. In previous preclinical studies we and others demonstrated the protective effects of black raspberry (BRB) against carcinogen-induced DNA damage and OSCC. Thus, to translate preclinical findings we tested the hypothesis, in a Phase 0 clinical study, that BRB administration reduces DNA damage induced by B[a]P in buccal cells of smokers. After enrolling 27 smokers, baseline buccal cells were collected before the administration of BRB lozenges (5/day for 8 weeks, 1 gm BRB powder/lozenge) at baseline, at the middle and the end of BRB administration. The last samples were collected at four weeks after BRB cessation (washout period). B[a]P-induced DNA damage (BPDE-N2-dG) was evaluated by LC-MS/MS. BRB administration resulted in a significant reduction in DNA damage: 26.3% at the midpoint (p = 0.01506) compared to baseline, 36.1% at the end of BRB administration (p = 0.00355), and 16.6% after BRB cessation (p = 0.007586). Our results suggest the potential benefits of BRB as a chemopreventive agent against the development of TS-initiated OSCC.
RESUMEN
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme that promotes the degradation of low-density lipoprotein receptors. It is involved in hyperlipidemia as well as other diseases, such as cancer and skin inflammation. However, the detailed mechanism for PCSK9 on ultraviolet B (UVB)-induced skin lesions was not clear. Thus, the role and possible action mechanism of PCSK9 in UVB-induced skin damage in mice were studied here using siRNA and a small molecule inhibitor (SBC110736) against PCSK9. Immunohistochemical staining revealed a significant increase in PCSK9 expression after UVB exposure, indicating the possible role of PCSK9 in UVB damage. Skin damage, increase in epidermal thickness, and keratinocyte hyperproliferation were significantly alleviated after treatment with SBC110736 or siRNA duplexes, compared with that in the UVB model group. Notably, UVB exposure triggered DNA damage in keratinocytes, whereas substantial interferon regulatory factor 3 (IRF3) activation was observed in macrophages. Pharmacologic inhibition of STING or cGAS knockout significantly reduced UVB-induced damage. In the co-culture system, supernatant from UVB-treated keratinocyte induced IRF3 activation in macrophages. This activation was inhibited with SBC110736 and by PCSK9 knockdown. Collectively, our findings reveal that PCSK9 plays a critical role in the crosstalk between damaged keratinocytes and STING activation in macrophages. The interruption of this crosstalk by PCSK9 inhibition may be a potential therapeutic strategy for UVB-induced skin damage.
Asunto(s)
Queratinocitos , Proproteína Convertasa 9 , Envejecimiento de la Piel , Piel , Animales , Ratones , Queratinocitos/enzimología , Queratinocitos/efectos de la radiación , Macrófagos/metabolismo , Inhibidores de PCSK9/farmacología , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , ARN Interferente Pequeño/metabolismo , Piel/enzimología , Piel/efectos de la radiación , Envejecimiento de la Piel/efectos de los fármacos , Rayos Ultravioleta/efectos adversosRESUMEN
BACKGROUND: We sought to explore the associations of outdoor light at night (LAN) and air pollution with the risk of cerebrovascular disease (CeVD). METHODS: We included a total of 28â 302 participants enrolled in Ningbo, China from 2015 to 2018. Outdoor LAN and air pollution were assessed by Satellite-derived images and land-use regression models. CeVD cases were confirmed by medical records and death certificates and further subdivided into ischemic and hemorrhagic stroke. Cox proportional hazard models were used to estimate hazard ratios and 95% CIs. RESULTS: A total of 1278 CeVD cases (including 777 ischemic and 133 hemorrhagic stroke cases) were identified during 127â 877 person-years of follow-up. In the single-exposure models, the hazard ratios for CeVD were 1.17 (95% CI, 1.06-1.29) for outdoor LAN, 1.25 (1.12-1.39) for particulate matter with an aerodynamic diameter ≤2.5 µm, 1.14 (1.06-1.22) for particulate matter with aerodynamic diameter ≤10 µm, and 1.21 (1.06-1.38) for NO2 in every interquartile range increase. The results were similar for ischemic stroke, whereas no association was observed for hemorrhagic stroke. In the multiple-exposure models, the associations of outdoor LAN and PM with CeVD persisted but not for ischemic stroke. Furthermore, no interaction was observed between outdoor LAN and air pollution. CONCLUSIONS: Levels of exposure to outdoor LAN and air pollution were positively associated with the risk of CeVD. Furthermore, the detrimental effects of outdoor LAN and air pollution might be mutually independent.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Trastornos Cerebrovasculares , Accidente Cerebrovascular Hemorrágico , Accidente Cerebrovascular Isquémico , Humanos , Estudios de Cohortes , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/efectos adversos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Trastornos Cerebrovasculares/epidemiología , Trastornos Cerebrovasculares/etiología , China/epidemiologíaRESUMEN
Transition metal-catalyzed reductive cross-couplings to build C-C/Si bonds have been developed, but the reductive cross-coupling to create the C(sp2)-B bond has not been explored. Herein, we describe a nickel-catalyzed reductive cross-coupling between aryl halides and bromoboranes to construct a C(sp2)-B bond. This protocol offers a convenient approach for the synthesis of a wide range of aryl boronate esters, using readily available starting materials. Mechanistic studies indicate that the key to the success of the reaction is the activation of the B-Br bond of bromoboranes with a Lewis base such as 2-MeO-py. The activation ensures that bromoboranes will react with the active nickel(I) catalyst prior to aryl halides, which is different from the sequence of the general nickel-catalyzed reductive C(sp2)-C/Si cross-coupling, where the oxidative addition of an aryl halide proceeds first. Notably, this approach minimizes the production of undesired homocoupling byproduct without the requirement of excessive quantities of either substrate.
RESUMEN
BACKGROUND: Enhanced glycolysis is a crucial metabolic event that drives the development of liver fibrosis, but the molecular mechanisms have not been fully understood. Lactate is the endproduct of glycolysis, which has recently been identified as a bioactive metabolite binding to G-protein-coupled receptor 81 (GPR81). We then questioned whether GPR81 is implicated in the development of liver fibrosis. METHODS: The level of GPR81 was determined in mice with carbon tetrachloride (CCl4)-induced liver fibrosis and in transforming growth factor beta 1 (TGF-ß1)-activated hepatic stellate cells (HSCs) LX-2. To investigate the significance of GPR81 in liver fibrosis, wild-type (WT) and GPR81 knockout (KO) mice were exposed to CCl4, and then the degree of liver fibrosis was determined. In addition, the GPR81 agonist 3,5-dihydroxybenzoic acid (DHBA) was supplemented in CCl4-challenged mice and TGF-ß1-activated LX-2 cells to further investigate the pathological roles of GPR81 on HSCs activation. RESULTS: CCl4 exposure or TGF-ß1 stimulation significantly upregulated the expression of GPR81, while deletion of GPR81 alleviated CCl4-induced elevation of aminotransferase, production of pro-inflammatory cytokines, and deposition of collagen. Consistently, the production of TGF-ß1, the expression of alpha-smooth muscle actin (α-SMA) and collagen I (COL1A1), as well as the elevation of hydroxyproline were suppressed in GPR81 deficient mice. Supplementation with DHBA enhanced CCl4-induced liver fibrogenesis in WT mice but not in GPR81 KO mice. DHBA also promoted TGF-ß1-induced LX-2 activation. Mechanistically, GPR81 suppressed cAMP/CREB and then inhibited the expression of Smad7, a negative regulator of Smad3, which resulted in increased phosphorylation of Smad3 and enhanced activation of HSCs. CONCLUSION: GPR81 might be a detrimental factor that promotes the development of liver fibrosis by regulating CREB/Smad7 pathway.
Asunto(s)
Tetracloruro de Carbono , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Células Estrelladas Hepáticas , Cirrosis Hepática , Ratones Noqueados , Receptores Acoplados a Proteínas G , Transducción de Señal , Proteína smad7 , Animales , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Cirrosis Hepática/etiología , Cirrosis Hepática/inducido químicamente , Ratones , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células Estrelladas Hepáticas/metabolismo , Proteína smad7/metabolismo , Proteína smad7/genética , Factor de Crecimiento Transformador beta1/metabolismo , Masculino , Humanos , Línea Celular , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Eliminación de GenRESUMEN
BACKGROUND & AIMS: Lack of thorough knowledge about the complicated immune microenvironment (IM) within a variety of liver metastases (LMs) leads to inappropriate treatment and unsatisfactory prognosis. We aimed to characterize IM subtypes and investigate potential mechanisms in LMs. METHODS: Mass cytometry was applied to characterize immune landscape of a primary liver cancers and liver metastases cohort. Transcriptomic and whole-exome sequencing were used to explore potential mechanisms across distinct IM subtypes. Single-cell transcriptomic sequencing, multiplex fluorescent immunohistochemistry, cell culture, mouse model, Western blot, quantitative polymerase chain reaction, and immunohistochemistry were used for validation. RESULTS: Five IM subtypes were revealed in 100 LMs and 50 primary liver cancers. Patients featured terminally exhausted (IM1) or rare T-cell-inflamed (IM2 and IM3) immune characteristics showed worse outcome. Increased intratumor heterogeneity, enriched somatic TP53, KRAS, APC, and PIK3CA mutations and hyperactivated hypoxia signaling accounted for the formation of vicious subtypes. SLC2A1 promoted immune suppression and desert via increasing proportion of Spp1+ macrophages and their inhibitory interactions with T cells in liver metastatic lesions. Furthermore, SLC2A1 promoted immune escape and LM through inducing regulatory T cells, including regulatory T cells and LAG3+CD4+ T cells in primary colorectal cancer. CONCLUSIONS: The study provided integrated multi-omics landscape of LM, uncovering potential mechanisms for vicious IM subtypes and confirming the roles of SLC2A1 in regulating tumor microenvironment remodeling in both primary tumor and LM lesions.