Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 600(7890): 664-669, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34937898

RESUMEN

More than a decade of research on the electrocaloric (EC) effect has resulted in EC materials and EC multilayer chips that satisfy a minimum EC temperature change of 5 K required for caloric heat pumps1-3. However, these EC temperature changes are generated through the application of high electric fields4-8 (close to their dielectric breakdown strengths), which result in rapid degradation and fatigue of EC performance. Here we report a class of EC polymer that exhibits an EC entropy change of 37.5 J kg-1 K-1 and a temperature change of 7.5 K under 50 MV m-1, a 275% enhancement over the state-of-the-art EC polymers under the same field strength. We show that converting a small number of the chlorofluoroethylene groups in poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer into covalent double bonds markedly increases the number of the polar entities and enhances the polar-nonpolar interfacial areas of the polymer. The polar phases in the polymer adopt a loosely correlated, high-entropy state with a low energy barrier for electric-field-induced switching. The polymer maintains performance for more than one million cycles at the low fields necessary for practical EC cooling applications, suggesting that this strategy may yield materials suitable for use in caloric heat pumps.

2.
Nature ; 592(7854): 376-380, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33854251

RESUMEN

The collective dynamics of topological structures1-6 are of interest from both fundamental and applied perspectives. For example, studies of dynamical properties of magnetic vortices and skyrmions3,4 have not only deepened our understanding of many-body physics but also offered potential applications in data processing and storage7. Topological structures constructed from electrical polarization, rather than electron spin, have recently been realized in ferroelectric superlattices5,6, and these are promising for ultrafast electric-field control of topological orders. However, little is known about the dynamics underlying the functionality of such complex extended nanostructures. Here, using terahertz-field excitation and femtosecond X-ray diffraction measurements, we observe ultrafast collective polarization dynamics that are unique to polar vortices, with orders-of-magnitude higher frequencies and smaller lateral size than those of experimentally realized magnetic vortices3. A previously unseen tunable mode, hereafter referred to as a vortexon, emerges in the form of transient arrays of nanoscale circular patterns of atomic displacements, which reverse their vorticity on picosecond timescales. Its frequency is considerably reduced (softened) at a critical strain, indicating a condensation (freezing) of structural dynamics. We use first-principles-based atomistic calculations and phase-field modelling to reveal the microscopic atomic arrangements and corroborate the frequencies of the vortex modes. The discovery of subterahertz collective dynamics in polar vortices opens opportunities for electric-field-driven data processing in topological structures with ultrahigh speed and density.

3.
Nature ; 577(7790): 350-354, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31942055

RESUMEN

Transparent piezoelectrics are highly desirable for numerous hybrid ultrasound-optical devices ranging from photoacoustic imaging transducers to transparent actuators for haptic applications1-7. However, it is challenging to achieve high piezoelectricity and perfect transparency simultaneously because most high-performance piezoelectrics are ferroelectrics that contain high-density light-scattering domain walls. Here, through a combination of phase-field simulations and experiments, we demonstrate a relatively simple method of using an alternating-current electric field to engineer the domain structures of originally opaque rhombohedral Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) crystals to simultaneously generate near-perfect transparency, an ultrahigh piezoelectric coefficient d33 (greater than 2,100 picocoulombs per newton), an excellent electromechanical coupling factor k33 (about 94 per cent) and a large electro-optical coefficient γ33 (approximately 220 picometres per volt), which is far beyond the performance of the commonly used transparent ferroelectric crystal LiNbO3. We find that increasing the domain size leads to a higher d33 value for the [001]-oriented rhombohedral PMN-PT crystals, challenging the conventional wisdom that decreasing the domain size always results in higher piezoelectricity8-10. This work presents a paradigm for achieving high transparency and piezoelectricity by ferroelectric domain engineering, and we expect the transparent ferroelectric crystals reported here to provide a route to a wide range of hybrid device applications, such as medical imaging, self-energy-harvesting touch screens and invisible robotic devices.

4.
Proc Natl Acad Sci U S A ; 120(28): e2303312120, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37410867

RESUMEN

New properties and exotic quantum phenomena can form due to periodic nanotextures, including Moire patterns, ferroic domains, and topologically protected magnetization and polarization textures. Despite the availability of powerful tools to characterize the atomic crystal structure, the visualization of nanoscale strain-modulated structural motifs remains challenging. Here, we develop nondestructive real-space imaging of periodic lattice distortions in thin epitaxial films and report an emergent periodic nanotexture in a Mott insulator. Specifically, we combine iterative phase retrieval with unsupervised machine learning to invert the diffuse scattering pattern from conventional X-ray reciprocal-space maps into real-space images of crystalline displacements. Our imaging in PbTiO3/SrTiO3 superlattices exhibiting checkerboard strain modulation substantiates published phase-field model calculations. Furthermore, the imaging of biaxially strained Mott insulator Ca2RuO4 reveals a strain-induced nanotexture comprised of nanometer-thin metallic-structure wires separated by nanometer-thin Mott-insulating-structure walls, as confirmed by cryogenic scanning transmission electron microscopy (cryo-STEM). The nanotexture in Ca2RuO4 film is induced by the metal-to-insulator transition and has not been reported in bulk crystals. We expect the phasing of diffuse X-ray scattering from thin crystalline films in combination with cryo-STEM to open a powerful avenue for discovering, visualizing, and quantifying the periodic strain-modulated structures in quantum materials.


Asunto(s)
Películas Cinematográficas , Refracción Ocular , Aprendizaje Automático no Supervisado
5.
6.
Nature ; 565(7740): 468-471, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30643207

RESUMEN

Negative capacitance is a newly discovered state of ferroelectric materials that holds promise for electronics applications by exploiting a region of thermodynamic space that is normally not accessible1-14. Although existing reports of negative capacitance substantiate the importance of this phenomenon, they have focused on its macroscale manifestation. These manifestations demonstrate possible uses of steady-state negative capacitance-for example, enhancing the capacitance of a ferroelectric-dielectric heterostructure4,7,14 or improving the subthreshold swing of a transistor8-12. Yet they constitute only indirect measurements of the local state of negative capacitance in which the ferroelectric resides. Spatial mapping of this phenomenon would help its understanding at a microscopic scale and also help to achieve optimal design of devices with potential technological applications. Here we demonstrate a direct measurement of steady-state negative capacitance in a ferroelectric-dielectric heterostructure. We use electron microscopy complemented by phase-field and first-principles-based (second-principles) simulations in SrTiO3/PbTiO3 superlattices to directly determine, with atomic resolution, the local regions in the ferroelectric material where a state of negative capacitance is stabilized. Simultaneous vector mapping of atomic displacements (related to a complex pattern in the polarization field), in conjunction with reconstruction of the local electric field, identify the negative capacitance regions as those with higher energy density and larger polarizability: the domain walls where the polarization is suppressed.

7.
Nano Lett ; 24(19): 5761-5766, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709952

RESUMEN

Polar topological phases in oxide superlattices attracted significant attention due to their unique properties. Previous work revealed that a polar vortex and polar skyrmions exist in (PTO)/(STO) superlattices under different elastic constraints, i.e., on different substrates. Here, our phase-field simulation demonstrates that manipulating the PTO and STO layers' thickness can control the effective screening provided by STO and the depolarization degree in PTO, thus switching the system among the polar skyrmions, vortex labyrinth, or paraelectric phase without changing elastic constraints. Additionally, reducing the STO thickness creates interlayer coupling among PTO layers, generating the long-range order of topological phases within superlattices. Furthermore, we construct a PTO-STO thickness topological phase diagram. These findings offer insights into the polar topological phases' formation in oxide superlattices, elucidating the roles of ferroelectric and paraelectric layers in their formation.

8.
Nano Lett ; 24(10): 2972-2979, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416567

RESUMEN

The recent discovery of polar topological structures has opened the door for exciting physics and emergent properties. There is, however, little methodology to engineer stability and ordering in these systems, properties of interest for engineering emergent functionalities. Notably, when the surface area is extended to arbitrary thicknesses, the topological polar texture becomes unstable. Here we show that this instability of the phase is due to electrical coupling between successive layers. We demonstrate that this electrical coupling is indicative of an effective screening length in the dielectric, similar to the conductor-ferroelectric interface. Controlling the electrostatics of the superlattice interfaces, the system can be tuned between a pure topological vortex state and a mixed classical-topological phase. This coupling also enables engineering coherency among the vortices, not only tuning the bulk phase diagram but also enabling the emergence of a 3D lattice of polar textures.

9.
BMC Genomics ; 25(1): 106, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267855

RESUMEN

BACKGROUND: Camellia sasanqua Thunb. is an essential woody ornamental plant. Our continuous observation found that scale insects often infest C. sasanqua all year round in Kunming, China, resulting in poor growth. Scientifically preventing and controlling the infestation of scale insects should be paid attention to, and the mechanism of scale insects influencing C. sasanqua should be used as the research basis. RESULTS: The scale insect was identified as Pseudaulacaspis sasakawai Takagi. We analyzed transcriptome sequencing data from leaves of C. sasanqua infested with scale insects. A total of 1320 genes were either up-regulated or down-regulated and differed significantly in response to scale insects. GO (Gene Ontology) annotation analysis showed that the pathway of catalytic activity, binding, membrane part, cell part, and cellular process were affected. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that most DEGs (differentially expressed genes) involved in plant hormone signal transduction, MAPK signaling pathway, flavonoid biosynthesis, tropane, piperidine and pyridine alkaloid biosynthesis. We also observed that the expression of galactose metabolism and carotenoid biosynthesis were significantly influenced. In addition, qRT-PCR (quantitative real-time PCR) validated the expression patterns of DEGs, which showed an excellent agreement with the transcriptome sequencing. CONCLUSIONS: Our transcriptomic analysis revealed that the C. sasanqua had an intricate resistance strategy to cope with scale insect attacks. After sensing the attack signal of scale insects, C. sasanqua activated the early signal MAPK (mitogen-activated protein kinase) to activate further transcription factors and Auxin, ET, JA, ABA, and other plant hormone signaling pathways, ultimately leading to the accumulation of lignin, scopolin, flavonoids and other secondary metabolites, produces direct and indirect resistance to scale insects. Our results suggested that it provided some potential resources of defense genes that would benefit the following resistance breeding in C. sasanqua to scale insects.


Asunto(s)
Camellia , Reguladores del Crecimiento de las Plantas , Fitomejoramiento , Perfilación de la Expresión Génica , Transcriptoma , Camellia/genética
10.
J Am Chem Soc ; 146(3): 1926-1934, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38193748

RESUMEN

Dielectric capacitors are highly desired in modern electronic devices and power systems to store and recycle electric energy. However, achieving simultaneous high energy density and efficiency remains a challenge. Here, guided by theoretical and phase-field simulations, we are able to achieve a superior comprehensive property of ultrahigh efficiency of 90-94% and high energy density of 85-90 J cm-3 remarkably in strontium titanate (SrTiO3), a linear dielectric of a simple chemical composition, by manipulating local symmetry breaking through introducing Ti/O defects. Atomic-scale characterizations confirm that these Ti/O defects lead to local symmetry breaking and local lattice strains, thus leading to the formation of the isolated ultrafine polar nanoclusters with varying sizes from 2 to 8 nm. These nanoclusters account for both considerable dielectric polarization and negligible polarization hysteresis. The present study opens a new realm of designing high-performance dielectric capacitors utilizing a large family of readily available linear dielectrics with very simple chemistry.

11.
Nat Mater ; 22(7): 873-879, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37231245

RESUMEN

The interconversion between electrical and mechanical energies is pivotal to ferroelectrics to enable their applications in transducers, actuators and sensors. Ferroelectric polymers exhibit a giant electric-field-induced strain (>4.0%), markedly exceeding the actuation strain (≤1.7%) of piezoelectric ceramics and crystals. However, their normalized elastic energy densities remain orders of magnitude smaller than those of piezoelectric ceramics and crystals, severely limiting their practical applications in soft actuators. Here we report the use of electro-thermally induced ferroelectric phase transition in percolative ferroelectric polymer nanocomposites to achieve high strain performance in electric-field-driven actuation materials. We demonstrate a strain of over 8% and an output mechanical energy density of 11.3 J cm-3 at an electric field of 40 MV m-1 in the composite, outperforming the benchmark relaxor single-crystal ferroelectrics. This approach overcomes the trade-off between mechanical modulus and electro-strains in conventional piezoelectric polymer composites and opens up an avenue for high-performance ferroelectric actuators.


Asunto(s)
Electricidad , Nanocompuestos , Polímeros
12.
Nat Mater ; 22(2): 207-215, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36536139

RESUMEN

Competition between ground states at phase boundaries can lead to significant changes in properties under stimuli, particularly when these ground states have different crystal symmetries. A key challenge is to stabilize and control the coexistence of symmetry-distinct phases. Using BiFeO3 layers confined between layers of dielectric TbScO3 as a model system, we stabilize the mixed-phase coexistence of centrosymmetric and non-centrosymmetric BiFeO3 phases at room temperature with antipolar, insulating and polar semiconducting behaviour, respectively. Application of orthogonal in-plane electric (polar) fields results in reversible non-volatile interconversion between the two phases, hence removing and introducing centrosymmetry. Counterintuitively, we find that an electric field 'erases' polarization, resulting from the anisotropy in octahedral tilts introduced by the interweaving TbScO3 layers. Consequently, this interconversion between centrosymmetric and non-centrosymmetric phases generates changes in the non-linear optical response of over three orders of magnitude, resistivity of over five orders of magnitude and control of microscopic polar order. Our work establishes a platform for cross-functional devices that take advantage of changes in optical, electrical and ferroic responses, and demonstrates octahedral tilts as an important order parameter in materials interface design.

13.
Proc Natl Acad Sci U S A ; 118(24)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34117121

RESUMEN

Superelastic materials capable of recovering large nonlinear strains are ideal for a variety of applications in morphing structures, reconfigurable systems, and robots. However, making oxide materials superelastic has been a long-standing challenge due to their intrinsic brittleness. Here, we fabricate ferroelectric BaTiO3 (BTO) micropillars that not only are superelastic but also possess excellent fatigue resistance, lasting over 1 million cycles without accumulating residual strains or noticeable variation in stress-strain curves. Phase field simulations reveal that the large recoverable strains of BTO micropillars arise from surface tension-modulated 90° domain switching and thus are size dependent, while the small energy barrier and ultralow energy dissipation are responsible for their unprecedented cyclic stability among superelastic materials. This work demonstrates a general strategy to realize superelastic and fatigue-resistant domain switching in ferroelectric oxides for many potential applications.

14.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34493666

RESUMEN

Vanadium dioxide (VO2), which exhibits a near-room-temperature insulator-metal transition, has great potential in applications of neuromorphic computing devices. Although its volatile switching property, which could emulate neuron spiking, has been studied widely, nanoscale studies of the structural stochasticity across the phase transition are still lacking. In this study, using in situ transmission electron microscopy and ex situ resistive switching measurement, we successfully characterized the structural phase transition between monoclinic and rutile VO2 at local areas in planar VO2/TiO2 device configuration under external biasing. After each resistive switching, different VO2 monoclinic crystal orientations are observed, forming different equilibrium states. We have evaluated a statistical cycle-to-cycle variation, demonstrated a stochastic nature of the volatile resistive switching, and presented an approach to study in-plane structural anisotropy. Our microscopic studies move a big step forward toward understanding the volatile switching mechanisms and the related applications of VO2 as the key material of neuromorphic computing.

15.
Nano Lett ; 23(21): 9907-9911, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37883233

RESUMEN

Polar skyrmions in oxide heterostructures have recently attracted extensive interest due to their unique physical properties and potential applications. Here, we report the formation of the vortex lattice and the nanoscale polar skyrmion crystals with two-dimensional hexagonal symmetry in PbTiO3/SrTrO3 (PTO/STO) superlattices. Under an increasing external field, the system transitions from a vortex lattice phase to hexagonal polar skyrmion crystals (PSkC). The formation and annihilation process of the polar skyrmion crystals resemble the structural phase transition observed in atomic crystals. A temperature-electric field topological phase diagram is constructed, demonstrating stabilization of the vortex lattice and polar skyrmion crystals in a wide temperature and electric-field range. This study demonstrates the potential of manipulating the topological phase transition and its long-range order through an external field.

16.
Nano Lett ; 23(7): 2551-2556, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36971545

RESUMEN

We study the thermodynamics of nanoscale polar structures in PbTiO3/SrTiO3 ferroelectric superlattices induced by above-bandgap optical excitation using a phase-field model explicitly considering both structural and electronic processes. We demonstrate that the light-excited carriers provide the charge compensation of polarization bound charges and the lattice thermal energy, both of which are key to the thermodynamic stabilization of a previously observed supercrystal, a three-dimensionally periodic nanostructure, within a window of substrate strains, while different mechanical and electrical boundary conditions can stabilize a number of other nanoscale polar structures by balancing the competing short-range exchange interactions responsible for the domain wall energy and long-range electrostatic and elastic interactions. The insights into the light-induced formation and richness of nanoscale structures from this work offer theoretical guidance for exploring and manipulating the thermodynamic stability of nanoscale polar structures employing a combination of thermal, mechanical, and electrical stimuli as well as light.

17.
Nat Mater ; 21(3): 290-296, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34824395

RESUMEN

Two-phase titanium-based alloys are widely used in aerospace and biomedical applications, and they are obtained through phase transformations between a low-temperature hexagonal closed-packed α-phase and a high-temperature body-centred cubic ß-phase. Understanding how a new phase evolves from its parent phase is critical to controlling the transforming microstructures and thus material properties. Here, we report time-resolved experimental evidence, at sub-ångström resolution, of a non-classically nucleated metastable phase that bridges the α-phase and the ß-phase, in a technologically important titanium-molybdenum alloy. We observed a nanosized and chemically ordered superstructure in the α-phase matrix; its composition, chemical order and crystal structure are all found to be different from both the parent and the product phases, but instigating a vanishingly low energy barrier for the transformation into the ß-phase. This latter phase transition can proceed instantly via vibrational switching when the molybdenum concentration in the superstructure exceeds a critical value. We expect that such a non-classical phase evolution mechanism is much more common than previously believed for solid-state transformations.


Asunto(s)
Aleaciones , Titanio , Aleaciones/química , Calor , Molibdeno/química , Transición de Fase , Titanio/química
18.
Nat Mater ; 21(9): 1074-1080, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35668148

RESUMEN

Electrostatic dielectric capacitors are essential components in advanced electronic and electrical power systems due to their ultrafast charging/discharging speed and high power density. A major challenge, however, is how to improve their energy densities to effectuate the next-generation applications that demand miniaturization and integration. Here, we report a high-entropy stabilized Bi2Ti2O7-based dielectric film that exhibits an energy density as high as 182 J cm-3 with an efficiency of 78% at an electric field of 6.35 MV cm-1. Our results reveal that regulating the atomic configurational entropy introduces favourable and stable microstructural features, including lattice distorted nano-crystalline grains and a disordered amorphous-like phase, which enhances the breakdown strength and reduces the polarization switching hysteresis, thus synergistically contributing to the energy storage performance. This high-entropy approach is expected to be widely applicable for the development of high-performance dielectrics.

19.
Phys Rev Lett ; 130(18): 186801, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37204879

RESUMEN

Perovskite rare earth nickelates exhibit remarkably rich physics in their metal-insulator and antiferromagnetic transitions, and there has been a long-standing debate on whether their magnetic structures are collinear or noncollinear. Through symmetry consideration based on the Landau theory, we discover that the antiferromagnetic transitions on the two nonequivalent Ni sublattices occur separately at different Néel temperatures induced by the O breathing mode. It is manifested by two kinks on the temperature-dependent magnetic susceptibilities with the secondary kink being continuous in the collinear magnetic structure but discontinuous in the noncollinear one. The prediction on the secondary discontinuous kink is corroborated by an existing magnetic susceptibility measurement on bulk single-crystalline nickelates, thus strongly supporting the noncollinear nature of the magnetic structure in bulk nickelates, thereby shedding new light on the long-standing debate.

20.
Nano Lett ; 22(23): 9275-9282, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36450036

RESUMEN

Relaxor ferroelectrics have been intensely studied for decades based on their unique electromechanical responses which arise from local structural heterogeneity involving polar nanoregions or domains. Here, we report first studies of the ultrafast dynamics and reconfigurability of the polarization in freestanding films of the prototypical relaxor 0.68PbMg1/3Nb2/3O3-0.32PbTiO3 (PMN-0.32PT) by probing its atomic-scale response via femtosecond-resolution, electron-scattering approaches. By combining these structural measurements with dynamic phase-field simulations, we show that femtosecond light pulses drive a change in both the magnitude and direction of the polarization vector within polar nanodomains on few-picosecond time scales. This study defines new opportunities for dynamic reconfigurable control of the polarization in nanoscale relaxor ferroelectrics.


Asunto(s)
Electrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA