Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Pharmacol Rev ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866560

RESUMEN

Drug targets are specific molecules in biological tissues and body fluids that interact with drugs. Drug target discovery is a key component of drug discovery and is essential for the development of new drugs in areas such as cancer therapy and precision medicine. Traditional in vitro or in vivo target discovery methods are time-consuming and labour-intensive, limiting the pace of drug discovery. With the development of modern discovery methods, the discovery and application of various emerging technologies have greatly improved the efficiency of drug discovery, shortened the cycle time and reduced the cost. This review provides a comprehensive overview of various emerging drug target discovery strategies, including computer-assisted approaches, drug affinity response target stability, multiomics analysis, gene editing, and NMD, and discusses the effectiveness and limitations of the various approaches, as well as their application in real cases. Through the review of the above related contents, a general overview of the development of novel drug targets and disease treatment strategies will be provided, and a theoretical basis will be provided for those who are engaged in pharmaceutical science research. Significance Statement Target-based drug discovery has been the main approach to drug discovery in the pharmaceutical industry for the past three decades. Traditional drug target discovery methods based on in vivo or in vitro validation are time-consuming and costly, greatly limiting the development of new drugs. Therefore, the development and selection of new methods in the drug target discovery process is crucial.

2.
Genome Res ; 33(3): 371-385, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36963844

RESUMEN

Alternative splicing (AS) regulates gene expression and increases proteomic diversity for the fine tuning of stress responses in plants, but the exact mechanism through which AS functions in plant stress responses is not thoroughly understood. Here, we investigated how AS functions in poplar (Populus trichocarpa), a popular plant for bioremediation, in response to lead (Pb) stress. Using a proteogenomic analysis, we determine that Pb stress induced alterations in AS patterns that are characterized by an increased use of nonconventional splice sites and a higher abundance of Pb-responsive splicing factors (SFs) associated with Pb-responsive transcription factors. A strong Pb(II)-inducible chaperone protein, PtHSP70, that undergoes AS was further characterized. Overexpression of its two spliced isoforms, PtHSP70-AS1 and PtHSP70-AS2, in poplar and Arabidopsis significantly enhances the tolerance to Pb. Further characterization shows that both isoforms can directly bind to Pb(II), and PtHSP70-AS2 exhibits 10-fold higher binding capacities and a greater increase in expression under Pb stress, thereby reducing cellular toxicity through Pb(II) extrusion and conferring Pb tolerance. AS of PtHSP70 is found to be regulated by PtU1-70K, a Pb(II)-inducible core SF involved in 5'-splice site recognition. Because the same splicing pattern is also found in HSP70 orthologs in other plant species, AS of HSP70 may be a common regulatory mechanism to cope with Pb(II) toxicity. Overall, we have revealed a novel post-transcriptional machinery that mediates heavy metal tolerance in diverse plant species. Our findings offer new molecular targets and bioengineering strategies for phytoremediation and provide new insight for future directions in AS research.


Asunto(s)
Arabidopsis , Populus , Proteogenómica , Empalme Alternativo , Proteómica , Populus/genética , Populus/metabolismo , Plomo/toxicidad , Plomo/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Cancer Cell Int ; 24(1): 22, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200525

RESUMEN

According to statistics, the incidence of liver cancer is increasing yearly, and effective treatment of liver cancer is imminent. For early liver cancer, resection surgery is currently the most effective treatment. However, resection does not treat the disease in advanced patients, so finding a method with a better prognosis is necessary. In recent years, ferroptosis and cuproptosis have been gradually defined, and related studies have proved that they show excellent results in the therapy of liver cancer. Cuproptosis is a new form of cell death, and the use of cuproptosis combined with ferroptosis to inhibit the production of hepatocellular carcinoma cells has good development prospects and is worthy of in-depth discussion by researchers. In this review, we summarize the research progress on cuproptosis combined with ferroptosis in treating liver cancer, analyze the value of cuproptosis and ferroptosis in the immune of liver cancer, and propose potential pathways in oncotherapy with the combination of cuproptosis and ferroptosis, which can provide background knowledge for subsequent related research.

4.
Plant Biotechnol J ; 21(3): 466-481, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36217562

RESUMEN

Submergence limits plants' access to oxygen and light, causing massive changes in metabolism; after submergence, plants experience additional stresses, including reoxygenation, dehydration, photoinhibition and accelerated senescence. Plant responses to waterlogging and partial or complete submergence have been well studied, but our understanding of plant responses during post-submergence recovery remains limited. During post-submergence recovery, whether a plant can repair the damage caused by submergence and reoxygenation and re-activate key processes to continue to grow, determines whether the plant survives. Here, we summarize the challenges plants face when recovering from submergence, primarily focusing on studies of Arabidopsis thaliana and rice (Oryza sativa). We also highlight recent progress in elucidating the interplay among various regulatory pathways, compare post-hypoxia reoxygenation between plants and animals and provide new perspectives for future studies.


Asunto(s)
Arabidopsis , Oryza , Inundaciones , Adaptación Fisiológica , Plantas , Oryza/metabolismo , Arabidopsis/fisiología
5.
New Phytol ; 237(6): 2238-2254, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36513604

RESUMEN

Submergence is an abiotic stress that limits agricultural production world-wide. Plants sense oxygen levels during submergence and postsubmergence reoxygenation and modulate their responses. Increasing evidence suggests that completely submerged plants are often exposed to low-light stress, owing to the depth and turbidity of the surrounding water; however, how light availability affects submergence tolerance remains largely unknown. Here, we showed that Arabidopsis thaliana MYB DOMAIN PROTEIN30 (MYB30) is an important transcription factor that integrates light signaling and postsubmergence stress responses. MYB DOMAIN PROTEIN30 protein abundance decreased upon submergence and accumulated during reoxygenation. Under submergence conditions, CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), a central regulator of light signaling, caused the ubiquitination and degradation of MYB30. In response to desubmergence, however, light-induced MYB30 interacted with MYC2, a master transcription factor involved in jasmonate signaling, and activated the expression of the VITAMIN C DEFECTIVE1 (VTC1) and GLUTATHIONE SYNTHETASE1 (GSH1) gene families to enhance antioxidant biosynthesis. Consistent with this, the myb30 knockout mutant showed increased sensitivity to submergence, which was partially rescued by overexpression of VTC1 or GSH1. Thus, our findings uncover the mechanism by which the COP1-MYB30 module integrates light signals with cellular oxidative homeostasis to coordinate plant responses to postsubmergence stress.


Asunto(s)
Arabidopsis , Estrés Fisiológico , Factores de Transcripción , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Ascórbico , Regulación de la Expresión Génica de las Plantas , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/metabolismo , Fenómenos Fisiológicos de las Plantas , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Plant Physiol ; 188(4): 1993-2011, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-34963002

RESUMEN

Lignin is a complex phenylpropanoid polymer deposited in the secondary cell walls of vascular plants. Unlike most gymnosperm and eudicot lignins that are generated via the polymerization of monolignols, grass lignins additionally incorporate the flavonoid tricin as a natural lignin monomer. The biosynthesis and functions of tricin-integrated lignin (tricin-lignin) in grass cell walls and its effects on the utility of grass biomass remain largely unknown. We herein report a comparative analysis of rice (Oryza sativa) mutants deficient in the early flavonoid biosynthetic genes encoding CHALCONE SYNTHASE (CHS), CHALCONE ISOMERASE (CHI), and CHI-LIKE (CHIL), with an emphasis on the analyses of disrupted tricin-lignin formation and the concurrent changes in lignin profiles and cell wall digestibility. All examined CHS-, CHI-, and CHIL-deficient rice mutants were largely depleted of extractable flavones, including tricin, and nearly devoid of tricin-lignin in the cell walls, supporting the crucial roles of CHS and CHI as committed enzymes and CHIL as a noncatalytic enhancer in the conserved biosynthetic pathway leading to flavone and tricin-lignin formation. In-depth cell wall structural analyses further indicated that lignin content and composition, including the monolignol-derived units, were differentially altered in the mutants. However, regardless of the extent of the lignin alterations, cell wall saccharification efficiencies of all tested rice mutants were similar to that of the wild-type controls. Together with earlier studies on other tricin-depleted grass mutant and transgenic plants, our results reflect the complexity in the metabolic consequences of tricin pathway perturbations and the relationships between lignin profiles and cell wall properties.


Asunto(s)
Lignina , Oryza , Aciltransferasas/metabolismo , Flavonoides , Lignina/metabolismo , Oryza/genética , Oryza/metabolismo
7.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982373

RESUMEN

Alternative splicing (AS) is one of the major post-transcriptional regulation mechanisms that contributes to plant responses to various environmental perturbations. Darkness and heat are two common abiotic factors affecting plant growth, yet the involvement and regulation of AS in the plant responses to these signals remain insufficiently examined. In this study, we subjected Arabidopsis seedlings to 6 h of darkness or heat stress and analyzed their transcriptome through short-read RNA sequencing. We revealed that both treatments altered the transcription and AS of a subset of genes yet with different mechanisms. Dark-regulated AS events were found enriched in photosynthesis and light signaling pathways, while heat-regulated AS events were enriched in responses to abiotic stresses but not in heat-responsive genes, which responded primarily through transcriptional regulation. The AS of splicing-related genes (SRGs) was susceptible to both treatments; while dark treatment mostly regulated the AS of these genes, heat had a strong effect on both their transcription and AS. PCR analysis showed that the AS of the Serine/Arginine-rich family gene SR30 was reversely regulated by dark and heat, and heat induced the upregulation of multiple minor SR30 isoforms with intron retention. Our results suggest that AS participates in plant responses to these two abiotic signals and reveal the regulation of splicing regulators during these processes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Empalme Alternativo , Arabidopsis/metabolismo , Empalme del ARN , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Isoformas de Proteínas/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
8.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38069395

RESUMEN

Zn2+-dependent histone deacetylases (HDACs) are enzymes that regulate gene expression by removing acetyl groups from histone proteins. These enzymes are essential in all living systems, playing key roles in cancer treatment and as potential pesticide targets. Previous phylogenetic analyses of HDAC in certain species have been published. However, their classification and evolutionary origins across biological kingdoms remain unclear, which limits our understanding of them. In this study, we collected the HDAC sequences from 1451 organisms and performed analyses. The HDACs are found to diverge into three classes and seven subclasses under divergent selection pressure. Most subclasses show species specificity, indicating that HDACs have evolved with high plasticity and diversification to adapt to different environmental conditions in different species. In contrast, HDAC1 and HDAC3, belonging to the oldest class, are conserved and crucial in major kingdoms of life, especially HDAC1. These findings lay the groundwork for the future application of HDACs.


Asunto(s)
Histonas , Zinc , Filogenia , Zinc/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo
9.
Physiol Plant ; 174(6): e13817, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36344445

RESUMEN

Soil salinity has become one of the major factors that threaten tall fescue growth and turf quality. Plants recruit diverse microorganisms in the rhizosphere to cope with salinity stress. In this study, 15 plant growth-promoting rhizobacteria (PGPR) were isolated from the salt-treated rhizosphere of tall fescue and were annotated to 10 genera, including Agrobacterium, Fictibacillus, Rhizobium, Bhargavaea, Microbacterium, Paenarthrobacter, Pseudarthrobacter, Bacillus, Halomonas, and Paracoccus. All strains could produce indole-3-acetic acid (IAA). Additionally, eight strains exhibited the ability to solubilize phosphate and potassium. Most strains could grow on the medium containing 600 mM NaCl, such as Bacillus zanthoxyli and Bacillus altitudinis. Furthermore, Bacillus zanthoxyli and Bacillus altitudinis were inoculated with tall fescue seeds and seedlings to determine their growth-promoting effect. The results showed that Bacillus altitudinis and mixed culture significantly increased the germination rate of tall fescue seeds. Bacillus zanthoxyli can significantly increase the tillers number and leaf width of seedlings under salt conditions. Through the synergistic effect of FaSOS1, FaHKT1, and FaHAK1 genes, Bacillus zanthoxyli helps to expel the excess Na+ from aboveground parts and absorb more K+ in roots to maintain ion homeostasis in tall fescue. Unexpectedly, we found that Bacillus altitudinis displayed an inapparent growth-promoting effect on seedlings under salt stress. Interestingly, the mixed culture of the two strains was also able to alleviate, to some extent, the effects of salt stress on tall fescue. This study provides a preliminary understanding of tall fescue rhizobacteria and highlights the role of Bacillus zanthoxyli in tall fescue growth and salt tolerance.


Asunto(s)
Bacillus , Festuca , Lolium , Rizosfera , Estrés Salino , Desarrollo de la Planta , Plantones , Raíces de Plantas
10.
Neural Plast ; 2022: 6472475, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35915650

RESUMEN

Low-intensity focused ultrasound (LIFU) is a potential noninvasive method to alleviate allodynia by modulating the central nervous system. However, the underlying analgesic mechanisms remain unexplored. Here, we assessed how LIFU at the anterior cingulate cortex (ACC) affects behavior response and central plasticity resulting from chronic constrictive injury (CCI). The safety of LIFU stimulation was assessed by hematoxylin and eosin (H&E) and Fluoro-Jade C (FJC) staining. A 21-day ultrasound exposure therapy was conducted from day 91 after CCI surgery in mice. We assessed the 50% mechanical withdrawal threshold (MWT50) using Von Frey filaments (VFFs). The expression levels of microtubule-associated protein 2 (MAP2), growth-associated protein 43 (GAP43), and tau were determined via western blotting (WB) and immunofluorescence (IF) staining to evaluate the central plasticity in ACC. The regions of ACC were activated effectively and safely by LIFU stimulation, which significantly increased the number of c-fos-positive cells (P < 0.05) with no bleeding, coagulative necrosis, and neuronal loss. Under chronic neuropathic pain- (CNP-) induced allodynia, MWT50 decreased significantly (P < 0.05), and overexpression of MAP2, GAP43, and tau was also observed. After 3 weeks of treatment, significant increases in MWT50 were found in the CCI+LIFU group compared with the CCI group (P < 0.05). WB and IF staining both demonstrated a significant reduction in the expression levels of MAP2, GAP43, and tau (P < 0.05). LIFU treatment on ACC can effectively attenuate CNP-evoked mechanical sensitivity to pain and reverse aberrant central plasticity.


Asunto(s)
Hiperalgesia , Neuralgia , Animales , Giro del Cíngulo/metabolismo , Hiperalgesia/metabolismo , Hiperalgesia/terapia , Ratones , Neuralgia/metabolismo , Neuralgia/terapia , Plasticidad Neuronal , Ratas , Ratas Sprague-Dawley
11.
Plant J ; 103(1): 357-378, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32133712

RESUMEN

Intron-containing genes have the ability to generate multiple transcript isoforms by splicing, thereby greatly expanding the eukaryotic transcriptome and proteome. In eukaryotic cells, precursor mRNA (pre-mRNA) splicing is performed by a mega-macromolecular complex defined as a spliceosome. Among its splicing components, U1 small nuclear ribonucleoprotein (U1 snRNP) is the smallest subcomplex involved in early spliceosome assembly and 5'-splice site recognition. Its central component, named U1-70K, has been extensively characterized in animals and yeast. Very few investigations on U1-70K genes have been conducted in plants, however. To this end, we performed a comprehensive study to systematically identify 115 U1-70K genes from 67 plant species, ranging from algae to angiosperms. Phylogenetic analysis suggested that the expansion of the plant U1-70K gene family was likely to have been driven by whole-genome duplications. Subsequent comparisons of gene structures, protein domains, promoter regions and conserved splicing patterns indicated that plant U1-70Ks are likely to preserve their conserved molecular function across plant lineages and play an important functional role in response to environmental stresses. Furthermore, genetic analysis using T-DNA insertion mutants suggested that Arabidopsis U1-70K may be involved in response to osmotic stress. Our results provide a general overview of this gene family in Viridiplantae and will act as a reference source for future mechanistic studies on this U1 snRNP-specific splicing factor.


Asunto(s)
Genes de Plantas/genética , Plantas/genética , Sitios de Empalme de ARN/genética , Ribonucleoproteína Nuclear Pequeña U1/genética , Empalmosomas/genética , Secuencia Conservada/genética , ADN de Plantas/genética , Estudio de Asociación del Genoma Completo , Filogenia , Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Ribonucleoproteína Nuclear Pequeña U1/clasificación , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Empalmosomas/metabolismo , Estrés Fisiológico , Sintenía/genética
12.
BMC Plant Biol ; 21(1): 468, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645403

RESUMEN

BACKGROUND: The fragrant flower plant Osmanthus fragrans has an extremely rare androdioecious breeding system displaying the occurrence of males and hermaphrodites in a single population, which occupies a crucial intermediate stage in the evolutionary transition between hermaphroditism and dioecy. However, the molecular mechanism of androdioecy plant is very limited and still largely unknown. RESULTS: Here, we used SWATH-MS-based quantitative approach to study the proteome changes between male and hermaphroditic O. fragrans pistils. A total of 428 proteins of diverse functions were determined to show significant abundance changes including 210 up-regulated and 218 down-regulated proteins in male compared to hermaphroditic pistils. Functional categorization revealed that the differentially expressed proteins (DEPs) primarily distributed in the carbohydrate metabolism, secondary metabolism as well as signaling cascades. Further experimental analysis showed the substantial carbohydrates accumulation associated with promoted net photosynthetic rate and water use efficiency were observed in purplish red pedicel of hermaphroditic flower compared with green pedicel of male flower, implicating glucose metabolism serves as nutritional modulator for the differentiation of male and hermaphroditic flower. Meanwhile, the entire upregulation of secondary metabolism including flavonoids, isoprenoids and lignins seem to protect and maintain the male function in male flowers, well explaining important feature of androdioecy that aborted pistil of a male flower still has a male function. Furthermore, nine selected DEPs were validated via gene expression analysis, suggesting an extra layer of post-transcriptional regulation occurs during O. fragrans floral development. CONCLUSION: Taken together, our findings represent the first SWATH-MS-based proteomic report in androdioecy plant O. fragrans, which reveal carbohydrate metabolism, secondary metabolism and post-transcriptional regulation contributing to the androdioecy breeding system and ultimately extend our understanding on genetic basis as well as the industrialization development of O. fragrans.


Asunto(s)
Metabolismo de los Hidratos de Carbono/genética , Flores/crecimiento & desarrollo , Flores/genética , Oleaceae/crecimiento & desarrollo , Oleaceae/genética , Oleaceae/metabolismo , Reproducción/genética , Reproducción/fisiología , Evolución Biológica , China , Regulación de la Expresión Génica de las Plantas , Variación Genética , Organismos Hermafroditas/genética , Organismos Hermafroditas/crecimiento & desarrollo , Organismos Hermafroditas/metabolismo , Fenotipo , Proteómica
13.
BMC Plant Biol ; 21(1): 514, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34736393

RESUMEN

BACKGROUND: Coleorhiza hairs, are sheath-like outgrowth organs in the seeds of Poaceae family that look like root hair but develop from the coleorhiza epidermal cells during seed imbibition. The major role of coleorhiza hair in seed germination involves facilitating water uptake and nutrient supply for seed germination. However, molecular basis of coleorhiza hair development and underlying genes and metabolic pathways during seed germination are largely unknown and need to be established. RESULTS: In this study, a comparative transcriptome analysis of coleorhiza hairs from japonica and indica rice suggested that DEGs in embryo samples from seeds with embryo in air (EIA) as compared to embryo from seeds completely covered by water (CBW) were enriched in water deprivation, abscisic acid (ABA) and auxin metabolism, carbohydrate catabolism and phosphorus metabolism in coleorhiza hairs in both cultivars. Up-regulation of key metabolic genes in ABA, auxin and dehydrin and aquaporin genes may help maintain the basic development of coleorhiza hair in japonica and indica in EIA samples during both early and late stages. Additionally, DEGs involved in glutathione metabolism and carbon metabolism are upregulated while DEGs involved in amino acid and nucleotide sugar metabolism are downregulated in EIA suggesting induction of oxidative stress-alleviating genes and less priority to primary metabolism. CONCLUSIONS: Taken together, results in this study could provide novel aspects about the molecular signaling that could be involved in coleorhiza hair development in different types of rice cultivars during seed germination and may give some hints for breeders to improve seed germination efficiency under moderate drought conditions.


Asunto(s)
Oryza/metabolismo , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Germinación/fisiología , Ácidos Indolacéticos/metabolismo , Oryza/genética , Transcriptoma/genética
14.
Planta ; 255(1): 25, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34940917

RESUMEN

MAIN CONCLUSION: This study systematically identifies 112 U2A genes from 80 plant species by combinatory bioinformatics analysis, which is important for understanding their phylogenetic history, expression profiles and for predicting specific functions. In eukaryotes, a pre-mRNA can generate multiple transcripts by removing certain introns and joining corresponding exons, thus greatly expanding the transcriptome and proteome diversity. The spliceosome is a mega-Dalton ribonucleoprotein (RNP) complex that is essential for the process of splicing. In spliceosome components, the U2 small nuclear ribonucleoprotein (U2 snRNP) forms the pre-spliceosome by association with the branch site. An essential component that promotes U2 snRNP assembly, named U2A, has been extensively identified in humans, yeast and nematodes. However, studies examining U2A genes in plants are scarce. In this study, we performed a comprehensive analysis and identified a total of 112 U2A genes from 80 plant species representing dicots, monocots, mosses and algae. Comparisons of the gene structures, protein domains, and expression patterns of 112 U2A genes indicated that the conserved functions were likely retained by plant U2A genes and important for responses to internal and external stimuli. In addition, analysis of alternative transcripts and splice sites of U2A genes indicated that the fifth intron contained a conserved alternative splicing event that might be important for its molecular function. Our work provides a general understanding of this splicing factor family in terms of genes and proteins, and it will serve as a fundamental resource that will contribute to further mechanistic characterization in plants.


Asunto(s)
Plantas/genética , Ribonucleoproteína Nuclear Pequeña U2 , Empalmosomas , Filogenia , Empalme del ARN/genética , Factores de Empalme de ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/genética , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo
15.
Plant Physiol ; 182(3): 1510-1526, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31857423

RESUMEN

Rice (Oryza sativa) molecular breeding has gained considerable attention in recent years, but inaccurate genome annotation hampers its progress and functional studies of the rice genome. In this study, we applied single-molecule long-read RNA sequencing (lrRNA_seq)-based proteogenomics to reveal the complexity of the rice transcriptome and its coding abilities. Surprisingly, approximately 60% of loci identified by lrRNA_seq are associated with natural antisense transcripts (NATs). The high-density genomic arrangement of NAT genes suggests their potential roles in the multifaceted control of gene expression. In addition, a large number of fusion and intergenic transcripts have been observed. Furthermore, 906,456 transcript isoforms were identified, and 72.9% of the genes can generate splicing isoforms. A total of 706,075 posttranscriptional events were subsequently categorized into 10 subtypes, demonstrating the interdependence of posttranscriptional mechanisms that contribute to transcriptome diversity. Parallel short-read RNA sequencing indicated that lrRNA_seq has a superior capacity for the identification of longer transcripts. In addition, over 190,000 unique peptides belonging to 9,706 proteoforms/protein groups were identified, expanding the diversity of the rice proteome. Our findings indicate that the genome organization, transcriptome diversity, and coding potential of the rice transcriptome are far more complex than previously anticipated.


Asunto(s)
Oryza/genética , Oryza/metabolismo , Proteogenómica/métodos , Proteoma/metabolismo , ARN sin Sentido/genética , Análisis de Secuencia de ARN , Transcriptoma
16.
Plant Cell Environ ; 44(1): 88-101, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32677712

RESUMEN

Germination is a plant developmental process by which radicle of mature seeds start to penetrate surrounding barriers for seedling establishment and multiple environmental factors have been shown to affect it. Little is known how high salinity affects seed germination of C4 plant, Zea mays. Preliminary germination assay suggested that isolated embryo alone was able to germinate under 200 mM NaCl treatment, whereas the intact seeds were highly repressed. We hypothesized that maize endosperm may function in perception and transduction of salt signal to surrounding tissues such as embryo, showing a completely different response to that in Arabidopsis. Since salt response involves ABA, we analysed in vivo ABA distribution and quantity and the result demonstrated that ABA level in isolated embryo under NaCl treatment failed to increase in comparison with the water control, suggesting that the elevation of ABA level is an endosperm dependent process. Subsequently, by using advanced profiling techniques such as RNA sequencing and SWATH-MS-based quantitative proteomics, we found substantial differences in post-transcriptional and translational changes between salt-treated embryo and endosperm. In summary, our results indicate that these regulatory mechanisms, such as alternative splicing, are likely to mediate early responses to salt stress during maize seed germination.


Asunto(s)
Semillas/metabolismo , Cloruro de Sodio/metabolismo , Zea mays/genética , Ácido Abscísico/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteoma , Estrés Salino , Semillas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
17.
J Exp Bot ; 72(13): 5051-5065, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33909901

RESUMEN

In the 21st century, drought has been the main cause of shortages in world grain production and has created problems with food security. Abscisic acid (ABA) is a key plant hormone involved in the response to abiotic stress, especially drought. The pyrabactin resistance (PYR)/PYR1-like (PYL)/regulatory component of abscisic acid receptor (RCAR) family of proteins (simplified as PYLs) is a well-known ABA receptor family, which can be divided into dimeric and monomeric forms. PYLs can recognize ABA and activate downstream plant drought-resistance signals. However, the difference between monomeric and dimeric receptors in the mechanism of the response to ABA is unclear. Here, we reveal that monomeric receptors have a competitive advantage over dimeric receptors for binding to ABA, driven by the energy penalty resulting from dimer dissociation. ABA also plays different roles with the monomer and the dimer: in the monomer, it acts as a 'conformational stabilizer' for stabilizing the closed gate, whereas for the dimer, it serves as an 'allosteric promoter' for promoting gate closure, which leads to dissociation of the two subunits. This work illustrates how receptor oligomerization could modulate hormonal responses and provides a new concept for novel engineered plants based on ABA binding of monomers.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequías , Reguladores del Crecimiento de las Plantas , Unión Proteica
18.
Ecotoxicol Environ Saf ; 220: 112410, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34126303

RESUMEN

Lead (Pb) toxicity is a growing serious environmental pollution that threatens human health and crop productivity. Poplar, as an important economic and ecological forest species, has the characteristics of fasting growth and accumulating heavy metals, which is a powerful model plant for phytoremediation. Here, a novel label-free quantitative proteomic platform of SWATH-MS was applied to detect proteome changes in poplar seedling roots following Pb treatment. In total 4388 unique proteins were identified and quantified, among which 542 proteins showed significant abundance changes upon Pb(II) exposure. Functional categorizations revealed that differentially expressed proteins (DEPs) primarily distributed in specialized biological processes. Particularly, lignin and flavonoid biosynthesis pathway were strongly activated upon Pb exposure, implicating their potential roles for Pb detoxification in poplar. Furthermore, hemicellulose and pectin related cell wall proteins exhibited increased abundances, where may function as a sequestration reservoir to reduce Pb toxicity in cytoplasm. Simultaneously, up-regulation of glutathione metabolism may serve as a protective role for Pb-induced oxidative damages in poplar. Further correlation investigation revealed an extra layer of post-transcriptional regulation during Pb response in poplar. Overall, our work represents multiply potential regulators in mediating Pb tolerance in poplar, providing molecular targets and strategies for phytoremediation.


Asunto(s)
Plomo/toxicidad , Metales Pesados/toxicidad , Populus/efectos de los fármacos , Proteoma/efectos de los fármacos , Biodegradación Ambiental , Vías Biosintéticas/efectos de los fármacos , Plomo/metabolismo , Metales Pesados/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Populus/metabolismo , Proteoma/metabolismo , Proteómica , Plantones/efectos de los fármacos , Plantones/metabolismo
19.
Neural Plast ; 2021: 6659668, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33953740

RESUMEN

Effective treatment remains lacking for neuropathic pain (NP), a type of intractable pain. Low-intensity focused ultrasound (LIFU), a noninvasive, cutting-edge neuromodulation technique, can effectively enhance inhibition of the central nervous system (CNS) and reduce neuronal excitability. We investigated the effect of LIFU on NP and on the expression of potassium chloride cotransporter 2 (KCC2) in the spinal cords of rats with peripheral nerve injury (PNI) in the lumbar 4-lumbar 5 (L4-L5) section. In this study, rats received PNI surgery on their right lower legs followed by LIFU stimulation of the L4-L5 section of the spinal cord for 4 weeks, starting 3 days after surgery. We used the 50% paw withdraw threshold (PWT50) to evaluate mechanical allodynia. Western blotting (WB) and immunofluorescence (IF) were used to calculate the expression of phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), calcium/calmodulin-dependent protein kinase type IV (CaMKIV), phosphorylated cyclic adenosine monophosphate response element-binding protein (p-CREB), and KCC2 in the L4-L5 portion of the spinal cord after the last behavioral tests. We found that PWT50 decreased (P < 0.05) 3 days post-PNI surgery in the LIFU- and LIFU+ groups and increased (P < 0.05) after 4 weeks of LIFU stimulation. The expression of p-CREB and CaMKIV decreased (P < 0.05) and that of KCC2 increased (P < 0.05) after 4 weeks of LIFU stimulation, but that of p-ERK1/2 (P > 0.05) was unaffected. Our study showed that LIFU could effectively alleviate NP behavior in rats with PNI by increasing the expression of KCC2 on spinal dorsal corner neurons. A possible explanation is that LIFU could inhibit the activation of the CaMKIV-KCC2 pathway.


Asunto(s)
Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Región Lumbosacra , Neuralgia/terapia , Transducción de Señal , Simportadores/biosíntesis , Terapia por Ultrasonido/métodos , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/biosíntesis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Hiperalgesia/fisiopatología , Hiperalgesia/terapia , Región Lumbosacra/patología , Sistema de Señalización de MAP Quinasas , Masculino , Neuralgia/patología , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/terapia , Estimulación Física , Ratas , Ratas Sprague-Dawley , Cotransportadores de K Cl
20.
J Integr Plant Biol ; 63(10): 1753-1774, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34288433

RESUMEN

The rhizosheath, a layer of soil grains that adheres firmly to roots, is beneficial for plant growth and adaptation to drought environments. Switchgrass is a perennial C4 grass which can form contact rhizosheath under drought conditions. In this study, we characterized the microbiomes of four different rhizocompartments of two switchgrass ecotypes (Alamo and Kanlow) grown under drought or well-watered conditions via 16S ribosomal RNA amplicon sequencing. These four rhizocompartments, the bulk soil, rhizosheath soil, rhizoplane, and root endosphere, harbored both distinct and overlapping microbial communities. The root compartments (rhizoplane and root endosphere) displayed low-complexity communities dominated by Proteobacteria and Firmicutes. Compared to bulk soil, Cyanobacteria and Bacteroidetes were selectively enriched, while Proteobacteria and Firmicutes were selectively depleted, in rhizosheath soil. Taxa from Proteobacteria or Firmicutes were specifically selected in Alamo or Kanlow rhizosheath soil. Following drought stress, Citrobacter and Acinetobacter were further enriched in rhizosheath soil, suggesting that rhizosheath microbiome assembly is driven by drought stress. Additionally, the ecotype-specific recruitment of rhizosheath microbiome reveals their differences in drought stress responses. Collectively, these results shed light on rhizosheath microbiome recruitment in switchgrass and lay the foundation for the improvement of drought tolerance in switchgrass by regulating the rhizosheath microbiome.


Asunto(s)
Ecotipo , Microbiota , Osmorregulación , Panicum/microbiología , Raíces de Plantas/microbiología , Biocombustibles , Sequías , Panicum/fisiología , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA