Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 115(1): 190-204, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36994650

RESUMEN

Lignins and their antimicrobial-related polymers cooperatively enhance plant resistance to pathogens. Several isoforms of 4-coumarate-coenzyme A ligases (4CLs) have been identified as indispensable enzymes involved in lignin and flavonoid biosynthetic pathways. However, their roles in plant-pathogen interaction are still poorly understood. This study uncovers the role of Gh4CL3 in cotton resistance to the vascular pathogen Verticillium dahliae. The cotton 4CL3-CRISPR/Cas9 mutant (CR4cl) exhibited high susceptibility to V. dahliae. This susceptibility was most probably due to the reduction in the total lignin content and the biosynthesis of several phenolic metabolites, e.g., rutin, catechin, scopoletin glucoside, and chlorogenic acid, along with jasmonic acid (JA) attenuation. These changes were coupled with a significant reduction in 4CL activity toward p-coumaric acid substrate, and it is likely that recombinant Gh4CL3 could specifically catalyze p-coumaric acid to form p-coumaroyl-coenzyme A. Thus, overexpression of Gh4CL3 (OE4CL) showed increasing 4CL activity that augmented phenolic precursors, cinnamic, p-coumaric, and sinapic acids, channeling into lignin and flavonoid biosyntheses and enhanced resistance to V. dahliae. Besides, Gh4CL3 overexpression activated JA signaling that instantly stimulated lignin deposition and metabolic flux in response to pathogen, which all established an efficient plant defense response system, and inhibited V. dahliae mycelium growth. Our results propose that Gh4CL3 acts as a positive regulator for cotton resistance against V. dahliae by promoting JA signaling-mediated enhanced cell wall rigidity and metabolic flux.


Asunto(s)
Resistencia a la Enfermedad , Verticillium , Ligasas/metabolismo , Lignina/metabolismo , Verticillium/fisiología , Gossypium/genética , Gossypium/metabolismo , Enfermedades de las Plantas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
2.
BMC Plant Biol ; 24(1): 473, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38811869

RESUMEN

BACKGROUND: Carbon nano sol (CNS) can markedly affect the plant growth and development. However, few systematic analyses have been conducted on the underlying regulatory mechanisms in plants, including tobacco (Nicotiana tabacum L.). RESULTS: Integrated analyses of phenome, ionome, transcriptome, and metabolome were performed in this study to elucidate the physiological and molecular mechanisms underlying the CNS-promoting growth of tobacco plants. We found that 0.3% CNS, facilitating the shoot and root growth of tobacco plants, significantly increased shoot potassium concentrations. Antioxidant, metabolite, and phytohormone profiles showed that 0.3% CNS obviously reduced reactive oxygen species production and increased antioxidant enzyme activity and auxin accumulation. Comparative transcriptomics revealed that the GO and KEGG terms involving responses to oxidative stress, DNA binding, and photosynthesis were highly enriched in response to exogenous CNS application. Differential expression profiling showed that NtNPF7.3/NtNRT1.5, potentially involved in potassium/auxin transport, was significantly upregulated under the 0.3% CNS treatment. High-resolution metabolic fingerprints showed that 141 and 163 metabolites, some of which were proposed as growth regulators, were differentially accumulated in the roots and shoots under the 0.3% CNS treatment, respectively. CONCLUSIONS: Taken together, this study revealed the physiological and molecular mechanism underlying CNS-mediated growth promotion in tobacco plants, and these findings provide potential support for improving plant growth through the use of CNS.


Asunto(s)
Carbono , Metabolómica , Nicotiana , Reguladores del Crecimiento de las Plantas , Transcriptoma , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crecimiento & desarrollo , Carbono/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Perfilación de la Expresión Génica , Metaboloma , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Brotes de la Planta/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/genética
3.
J Periodontal Res ; 59(1): 32-41, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37842947

RESUMEN

OBJECTIVE: This study aimed to assess the association between the Mediterranean diet (MedDiet) and periodontitis in US adults and to further explore the mediating roles of obesity indicators in this association. BACKGROUND DATA: The relationship between MedDiet and periodontitis is controversial. And it is unclear whether obesity indicators are potential mediators of this relationship. METHODS: Using data derived from the National Health and Nutrition Examination Survey (2009-2014). Weighted binary logistic regression and restricted cubic spline were used to assess the association between MedDiet and periodontitis. Weighted ordinal logistic regression was performed to evaluate the relationship between MedDiet and periodontitis severity. The mediating roles of body mass index (BMI) and waist circumference in the relationship between the MedDiet and periodontitis were explored. Association analyses were further performed using mean clinical attachment loss (CAL) or mean periodontal probing depth (PPD) as dependent variables. The false discovery rate method was used to correct the p-values in the regression analyses. RESULTS: A total of 8290 eligible participants (4159 participants with periodontitis and 4131 without periodontitis) were included. A negative association between the MedDiet adherence score and periodontitis was observed in the binary logistic regression model (adjusted odds ratio = 0.94, 95% confidence interval: 0.90-0.97, p = .001). Restricted cubic spline regression revealed a dose-response relationship between the MedDiet adherence score and periodontitis. BMI and waist circumference significantly mediate this association, with mediation proportions of 9.7% (p = .032) and 9.3% (p = .012), respectively. Multivariable ordinal logistic regression showed that the MedDiet adherence score was negatively associated with the severity of periodontitis (all p < .05). Additionally, the MedDiet adherence score was negatively associated with mean PPD or mean CAL (all p < .05). CONCLUSIONS: This study suggests a significant negative association between adherence to the MedDiet and periodontitis and a possible mediating role of obesity indicators in this association. Furthermore, studies are still warranted to confirm our findings.


Asunto(s)
Dieta Mediterránea , Periodontitis , Adulto , Humanos , Encuestas Nutricionales , Obesidad/complicaciones , Periodontitis/epidemiología , Periodontitis/prevención & control , Periodontitis/complicaciones , Índice de Masa Corporal
4.
J Clin Periodontol ; 51(4): 441-451, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38158854

RESUMEN

AIM: To explore the association between polycyclic aromatic hydrocarbons (PAHs) (measured using urinary metabolites) and periodontitis using data from the National Health and Nutrition Examination Survey 2009-2014. MATERIALS AND METHODS: Weighted binary logistic regression, Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) regression were used to evaluate independent and joint associations between the six urinary monohydroxylated metabolites of PAHs (OH-PAHs) and periodontitis. RESULTS: In all, 3413 participants were included in this study. All six urinary OH-PAHs were present at higher levels in the periodontitis group compared with the non-periodontitis group (p < .001). Fully adjusted multivariable logistic regressions showed positive associations between the six urinary OH-PAHs and periodontitis (p < .05). Higher concentrations of OH-PAHs were also positively associated with attachment loss, periodontal pocket depth (PPD) and the number of tooth loss. BKMR and WQS regression yielded similar positive associations between OH-PAH mixtures and periodontitis. CONCLUSIONS: PAHs and their mixture are positively associated with periodontitis, which may provide novel insights into periodontitis prevention from an environmental exposure perspective.


Asunto(s)
Periodontitis , Hidrocarburos Policíclicos Aromáticos , Humanos , Teorema de Bayes , Encuestas Nutricionales , Periodontitis/epidemiología , Bolsa Periodontal , Hidrocarburos Policíclicos Aromáticos/efectos adversos
5.
Nucleic Acids Res ; 50(D1): D1448-D1455, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34718712

RESUMEN

The advent of single-cell sequencing opened a new era in transcriptomic and genomic research. To understand cell composition using single-cell studies, a variety of cell markers have been widely used to label individual cell types. However, the specific database of cell markers for use by the plant research community remains very limited. To overcome this problem, we developed the Plant Cell Marker DataBase (PCMDB, http://www.tobaccodb.org/pcmdb/), which is based on a uniform annotation pipeline. By manually curating over 130 000 research publications, we collected a total of 81 117 cell marker genes of 263 cell types in 22 tissues across six plant species. Tissue- and cell-specific expression patterns can be visualized using multiple tools: eFP Browser, Bar, and UMAP/TSNE graph. The PCMDB also supports several analysis tools, including SCSA and SingleR, which allows for user annotation of cell types. To provide information about plant species currently unsupported in PCMDB, potential marker genes for other plant species can be searched based on homology with the supported species. PCMDB is a user-friendly hierarchical platform that contains five built-in search engines. We believe PCMDB will constitute a useful resource for researchers working on cell type annotation and the prediction of the biological function of individual cells.


Asunto(s)
Bases de Datos Genéticas , Marcadores Genéticos/genética , Plantas/genética , Programas Informáticos , Biología Computacional , Genómica , Células Vegetales/clasificación , Plantas/clasificación , Transcriptoma/genética , Interfaz Usuario-Computador
6.
Ecotoxicol Environ Saf ; 271: 115885, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38194857

RESUMEN

Tobacco plants (Nicotiana tabacum L.) exhibit considerable potential for phytoremediation of soil cadmium (Cd) pollutants, owing to their substantial biomass and efficient metal accumulation capabilities. The reduction of Cd accumulation in tobacco holds promise for minimizing Cd intake in individuals exposed to cigar smoking. NRAMP transporters are pivotal in the processes of Cd accumulation and resistance in plants; however, limited research has explored the functions of NRAMPs in tobacco plants. In this investigation, we focused on NtNRAMP6c, one of the three homologs of NRAMP6 in tobacco. We observed a robust induction of NtNRAMP6c expression in response to both Cd toxicity and iron (Fe) deficiency, with the highest expression levels detected in the roots. Subsequent subcellular localization and heterologous expression analyses disclosed that NtNRAMP6c functions as a plasma membrane-localized Cd transporter. Moreover, its overexpression significantly heightened the sensitivity of yeast cells to Cd toxicity. Through CRISPR-Cas9-mediated knockout of NtNRAMP6c, we achieved a reduction in Cd accumulation and an enhancement in Cd resistance in tobacco plants. Comparative transcriptomic analysis unveiled substantial alterations in the transcriptional profiles of genes associated with metal ion transport, photosynthesis, and macromolecule catabolism upon NtNRAMP6c knockout. Furthermore, our study employed plant metabolomics and rhizosphere metagenomics to demonstrate that NtNRAMP6c knockout led to changes in phytohormone homeostasis, as well as shifts in the composition and abundance of microbial communities. These findings bear significant biological implications for the utilization of tobacco in phytoremediation strategies targeting Cd pollutants in contaminated soils, and concurrently, in mitigating Cd accumulation in tobacco production destined for cigar consumption.


Asunto(s)
Contaminantes Ambientales , Contaminantes del Suelo , Humanos , Cadmio/metabolismo , Nicotiana/genética , Hierro/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Contaminantes Ambientales/análisis , Raíces de Plantas/metabolismo , Contaminantes del Suelo/análisis
7.
Environ Res ; 216(Pt 4): 114848, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36403441

RESUMEN

Root-knot nematode (RKN) disease is a destructive soil disease that affects crop health and causes huge losses in crop production. To explore the relationships between soil environments, rhizobacterial communities, and plant health, rhizosphere bacterial communities were analyzed using metagenomic sequencing in tobacco samples with different grades of RKN disease. The results showed that the community structure and function of the plant rhizosphere were significantly correlated to the RKN disease. RKN density and urease content were key factors affecting the rhizosphere bacterial community. Urease accelerated the catabolism of urea and led to the production of high concentrations of ammonia, which directly suppressed the development of RKNs or by improving the nutritional and growth status of microorganisms that were antagonistic to RKNs. Further experiments showed that the suppression role of ammonia should be attributed to the direct inhibition of NH3. The bacterial members that were positively correlated with RKN density, contained many plant cell wall degrading enzymes, which might destroy plant cell walls and promote the colonization of RKN in tobacco roots. The analysis of metatranscriptome and metabolism demonstrated the role of these cell wall degrading enzymes. This study offers a comprehensive insight into the relationships between RKNs, bacteria, and soil environmental factors and provides new ideas for the biological control of RKNs.


Asunto(s)
Microbiota , Tylenchoidea , Animales , Tylenchoidea/fisiología , Nicotiana , Rizosfera , Amoníaco , Ureasa/metabolismo , Enfermedades de las Plantas , Raíces de Plantas/metabolismo , Bacterias/genética , Suelo
8.
Lipids Health Dis ; 22(1): 158, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752554

RESUMEN

PURPOSE: Cholesterol metabolism is a risk factor for cardiovascular disease, and recent studies have shown that cholesterol metabolism poses a residual risk of cardiovascular disease even when conventional lipid risk factors are in the optimal range. The association between remnant cholesterol (RC) and cardiovascular disease has been demonstrated; however, its association with hypertension, type 2 diabetes mellitus (T2DM), and the concomitance of the two diseases requires further study. This study aimed to evaluate the association of RC with hypertension, T2DM, and both in a large sample of the U.S. population, and to further explore the potential mechanisms involved. METHODS: This cross-sectional study used data from the 2005-2018 cycles of the National Health and Nutrition Examination Survey (N = 17,749). Univariable and multivariable logistic regression analyses were performed to explore the relationships of RC with hypertension, T2DM, and both comorbidities. A restricted cubic spline regression model was used to reveal the dose effect. Mediation analyses were performed to explore the potential mediating roles of inflammation-related indicators in these associations. RESULTS: Of the 17,749 participants included (mean [SD] age: 41.57 [0.23] years; women: 8983 (50.6%), men: 8766 (49.4%)), the prevalence of hypertension, T2DM, and their co-occurrence was 32.6%, 16.1%, and 11.0%, respectively. Higher RC concentrations were associated with an increased risk of hypertension, T2DM, and their co-occurrence (adjusted odds ratios for per unit increase in RC were 1.068, 2.259, and 2.362, and 95% confidence intervals were 1.063-1.073, 1.797-2.838, and 1.834-3.041, respectively), with a linear dose-response relationship. Even when conventional lipids were present at normal levels, positive associations were observed. Inflammation-related indicators (leukocytes, lymphocytes, monocytes, and neutrophils) partially mediated these associations. Among these, leukocytes had the greatest mediating effect (10.8%, 14.5%, and 14.0%, respectively). CONCLUSION: The results of this study provide evidence that RC is associated with the risk of hypertension, T2DM, and their co-occurrence, possibly mediated by an inflammatory response.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Hipertensión , Masculino , Humanos , Femenino , Adulto , Enfermedades Cardiovasculares/complicaciones , Estudios Transversales , Encuestas Nutricionales , Factores de Riesgo , Hipertensión/epidemiología , Hipertensión/complicaciones , Colesterol , Inflamación/epidemiología , Inflamación/complicaciones
9.
Environ Res ; 214(Pt 1): 113902, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35839908

RESUMEN

Microbial degradation of organic compounds is an environmentally benign and energy efficient part in product processing. Fermentation of plant leaves involves enzymatic actions of many microorganisms. However, microbes and enzymes discovered from natural degradation communities were still limited by cultural methods. In this study, we used a metagenomics sequence-guided strategy to identify the microbes and enzymes involved in compound degradation and explore the potential synergy among community members in fermented tobacco leaves. The results showed that contents of protein, starch, pectin, lignin, and cellulose varied in fermented leaves from different growing sites. The different compound contents were closely related to taxonomic composition and functional profiles of foliar microbial communities. Microbial communities showed significant correlations with protein, lignin, and cellulose. Vital species for degradations of protein (Bacillus cereus and Terribacillus aidingensis), lignin (Klebsiella pneumoniae and Pantoea ananatis) and cellulose (Pseudomonas putida and Sphingomonas sp. Leaf20) were identified and relating hydrolytic enzymes were annotated. Further, twenty-two metagenome-assembled genomes (MAGs) were assembled from metagenomes and six potential cellulolytic genomes were used to reconstruct the cellulose-degrading process, revealing the potential metabolic cooperation related to cellulose degradation. Our work should deepen the understanding of microbial roles in plant fermentation and provide a new viewpoint for applying microbial consortia to convert plant organic components to small molecules.


Asunto(s)
Metagenoma , Metagenómica , Celulosa , Lignina , Consorcios Microbianos , Hojas de la Planta
10.
BMC Plant Biol ; 21(1): 217, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990182

RESUMEN

BACKGROUND: Soybean cyst nematode, Heterodera glycines, is one of the most devastating pathogens of soybean and causes severe annual yield losses worldwide. Different soybean varieties exhibit different responses to H. glycines infection at various levels, such as the genomic, transcriptional, proteomic and metabolomic levels. However, there have not yet been any reports of the differential responses of incompatible and compatible soybean varieties infected with H. glycines based on combined metabolomic and transcriptomic analyses. RESULTS: In this study, the incompatible soybean variety PI437654 and three compatible soybean varieties, Williams 82, Zhonghuang 13 and Hefeng 47, were used to clarify the differences in metabolites and transcriptomics before and after the infection with HG1.2.3.5.7. A local metabolite-calibrated database was used to identify potentially differential metabolites, and the differences in metabolites and metabolic pathways were compared between the incompatible and compatible soybean varieties after inoculation with HG1.2.3.5.7. In total, 37 differential metabolites and 20 KEGG metabolic pathways were identified, which were divided into three categories: metabolites/pathways overlapped in the incompatible and compatible soybeans, and metabolites/pathways specific to either the incompatible or compatible soybean varieties. Twelve differential metabolites were found to be involved in predicted KEGG metabolite pathways. Moreover, 14 specific differential metabolites (such as significantly up-regulated nicotine and down-regulated D-aspartic acid) and their associated KEGG pathways (such as the tropane, piperidine and pyridine alkaloid biosynthesis, alanine, aspartate and glutamate metabolism, sphingolipid metabolism and arginine biosynthesis) were significantly altered and abundantly enriched in the incompatible soybean variety PI437654, and likely played pivotal roles in defending against HG1.2.3.5.7 infection. Three key metabolites (N-acetyltranexamic acid, nicotine and D,L-tryptophan) found to be significantly up-regulated in the incompatible soybean variety PI437654 infected by HG1.2.3.5.7 were classified into two types and used for combined analyses with the transcriptomic expression profiling. Associated genes were predicted, along with the likely corresponding biological processes, cellular components, molecular functions and pathways. CONCLUSIONS: Our results not only identified potential novel metabolites and associated genes involved in the incompatible response of PI437654 to soybean cyst nematode HG1.2.3.5.7, but also provided new insights into the interactions between soybeans and soybean cyst nematodes.


Asunto(s)
Glycine max/genética , Glycine max/inmunología , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/inmunología , Infecciones por Nematodos/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Animales , Productos Agrícolas/genética , Productos Agrícolas/inmunología , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genómica , Genotipo , Raíces de Plantas/genética , Raíces de Plantas/inmunología , Proteómica , Glycine max/metabolismo , Transcriptoma , Tylenchoidea/fisiología
11.
BMC Plant Biol ; 21(1): 299, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187357

RESUMEN

BACKGROUND: Cigar wrapper leaves are the most important raw material of cigars. Studying the genomic information of cigar tobacco is conducive to improving cigar quality from the perspective of genetic breeding. However, no reference genome or full-length transcripts at the genome-wide scale have been reported for cigar tobacco. In particular, anion channels/transporters are of high interest for their potential application in regulating the chloride content of cigar tobacco growing on coastal lands, which usually results in relatively high Cl- accumulation, which is unfavorable. Here, the PacBio platform and NGS technology were combined to generate a full-length transcriptome of cigar tobacco used for cigar wrappers. RESULTS: High-quality RNA isolated from the roots, leaves and stems of cigar tobacco were subjected to both the PacBio platform and NGS. From PacBio, a total of 11,652,432 subreads (19-Gb) were generated, with an average read length of 1,608 bp. After corrections were performed in conjunction with the NGS reads, we ultimately identified 1,695,064 open reading frames including 21,486 full-length ORFs and 7,342 genes encoding transcription factors from 55 TF families, together with 2,230 genes encoding long non-coding RNAs. Members of gene families related to anion channels/transporters, including members of the SLAC and CLC families, were identified and characterized. CONCLUSIONS: The full-length transcriptome of cigar tobacco was obtained, annotated, and analyzed, providing a valuable genetic resource for future studies in cigar tobacco.


Asunto(s)
Proteínas de Transporte de Anión/genética , Genoma de Planta/genética , Canales Iónicos/genética , Nicotiana/genética , Proteínas de Plantas/genética , Productos de Tabaco , Transcriptoma/genética , Proteínas de Transporte de Anión/metabolismo , Canales Iónicos/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , ARN Largo no Codificante/genética , ARN de Planta/genética , Nicotiana/metabolismo , Factores de Transcripción/genética
12.
Planta ; 249(2): 543-561, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30293202

RESUMEN

MAIN CONCLUSION: This study illustrates the differences in the gene structure of 2-oxoglutarate-dependent oxygenase involved in flavonoid biosynthesis (2ODD-IFB), and their potential roles in regulating tobacco flavonoid biosynthesis and plant growth. Flavonol synthase (FLS), anthocyanidin synthase (ANS), and flavanone 3ß-hydroxylase belong to the 2-oxoglutarate-dependent (2ODD) oxygenase family, and each performs crucial functions in the biosynthesis of flavonoids. We identified two NtFLS genes, two NtANS genes, and four NtF3H genes from Nicotiana tabacum genome, as well as their homologous genes in the N. sylvestris and N. tomentosiformis genomes. Our phylogenetic analysis indicated that these three types of genes split from each other before the divergence of gymnosperms and angiosperms. FLS evolved faster in the eudicot plants, whereas ANS evolved faster in the monocot plants. Gene structure analysis revealed two fragment insertions occurred at different times in the intron one position of tobacco FLS genes. Homologous protein modeling revealed distinct structures in the N terminus of the tobacco 2ODD oxygenases. We found that the expression patterns of genes encoding tobacco 2ODD oxygenases in flavonoids biosynthesis (2ODD-IFB) did not determine the accumulation patterns of flavonoids among various tobacco tissues, but strongly affected the concentration of flavonoids in the tissues, where they were biosynthesized. More carbon resource flowed to the flavonol biosynthesis when NtANS gene was silenced, otherwise more anthocyanidin accumulated when NtFLS gene was repressed. This study illustrates the 2ODD-IFB gene structure evolution, differences among their protein structures, and provides a foundation for regulating plant development and altering flavonoid content and/or composition through the manipulation of plant 2ODD-IFB genes.


Asunto(s)
Flavonoides/biosíntesis , Genes de Plantas/genética , Oxigenasas de Función Mixta/genética , Nicotiana/genética , Transducción de Señal/genética , Secuencia Conservada/genética , Exones/genética , Intrones/genética , Oxigenasas de Función Mixta/metabolismo , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Nicotiana/enzimología , Nicotiana/metabolismo
13.
J Exp Bot ; 70(21): 6375-6388, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31433471

RESUMEN

The ratio between carbon (C) and nitrogen (N) utilization must be precisely coordinated to enable plant growth. Although numerous physiological studies have examined carbon/nitrogen (C/N) ratios, the mechanisms of sensing the C/N balance and C/N signaling remain elusive. Here, we report that a mutation of FERONIA (FER), a receptor kinase that plays versatile roles in plant cell growth and stress responses, caused hypersensitivity to a high C/N ratio in Arabidopsis. In contrast, FER-overexpressing plants displayed more resistant phenotypes. FER can interact with and phosphorylate ATL6, an E3 ubiquitin ligase that has been shown to regulate plant C/N responses. FER-mediated ATL6 phosphorylation enhanced the interaction between ATL6 and its previously identified target 14-3-3 proteins, thus decreasing 14-3-3 protein levels, leading to an increased insensitivity to high C/N ratios. Further analyses showed that the rapid alkalinization factor peptide (RALF1), which is a ligand of FER, also influenced the stability of 14-3-3 proteins via a FER-ATL6-mediated pathway. These findings reveal a novel regulatory mechanism that links the RALF1/FER-ATL6 pathway to whole-plant C/N responses and growth.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis/metabolismo , Carbono/farmacología , Nitrógeno/farmacología , Fosfotransferasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Modelos Biológicos , Hormonas Peptídicas/metabolismo , Fosforilación/efectos de los fármacos , Fosfotransferasas/química , Unión Proteica/efectos de los fármacos , Ubiquitina-Proteína Ligasas/química
14.
Int J Mol Sci ; 20(10)2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31091777

RESUMEN

Salinity is one of the most severe forms of abiotic stress and affects crop yields worldwide. Plants respond to salinity stress via a sophisticated mechanism at the physiological, transcriptional and metabolic levels. However, the molecular regulatory networks involved in salt and alkali tolerance have not yet been elucidated. We developed an RNA-seq technique to perform mRNA and small RNA (sRNA) sequencing of plants under salt (NaCl) and alkali (NaHCO3) stress in tobacco. Overall, 8064 differentially expressed genes (DEGs) and 33 differentially expressed microRNAs (DE miRNAs) were identified in response to salt and alkali stress. A total of 1578 overlapping DEGs, which exhibit the same expression patterns and are involved in ion channel, aquaporin (AQP) and antioxidant activities, were identified. Furthermore, genes involved in several biological processes, such as "photosynthesis" and "starch and sucrose metabolism," were specifically enriched under NaHCO3 treatment. We also identified 15 and 22 miRNAs that were differentially expressed in response to NaCl and NaHCO3, respectively. Analysis of inverse correlations between miRNAs and target mRNAs revealed 26 mRNA-miRNA interactions under NaCl treatment and 139 mRNA-miRNA interactions under NaHCO3 treatment. This study provides new insights into the molecular mechanisms underlying the response of tobacco to salinity stress.


Asunto(s)
MicroARNs/genética , Nicotiana/genética , ARN Mensajero/genética , Tolerancia a la Sal , Transcriptoma , Carbonatos/farmacología , Regulación de la Expresión Génica de las Plantas , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Nicotiana/efectos de los fármacos , Nicotiana/metabolismo
15.
Biochem Biophys Res Commun ; 496(4): 1155-1161, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29407171

RESUMEN

A family of NDR1/HIN1-like (NHL) genes that shows homology to the nonrace-specific disease resistance (NDR1) and the tobacco (Nicotiana tabacum) harpin-induced (HIN1) genes is reported to be involved in defense. However, little information about NHL genes is available for the potato (Solanum tuberosum). Here, we report that the expression of StPOTHR1, a member of the NHL gene family, is associated with resistance in potato against Phytophthora infestans, and is specifically induced in inoculation sites. Overexpression of StPOTHR1 enhances resistance against P. infestans via restricting rapid pathogen proliferation. Further, suppression of StPOTHR1 does not compromise R-mediated cell death. Subcellular localization and posttranscription modifications (PTMs) analysis reveals that StPOTHR1 is localized in plasma membrane (PM) and undergoes multiple PTMs. Moreover, StPOTHR1 interacts with NbMKK5L, a component of the MAP kinase signaling cascade. Taken together, our results suggest that the PM-localized StPOTHR1 contributes to potato immunity against P. infestans and may be associated with the MAP kinase signaling cascade.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Phytophthora infestans/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/inmunología , Solanum tuberosum/inmunología , Solanum tuberosum/parasitología , Phytophthora infestans/patogenicidad
16.
Biochem Biophys Res Commun ; 503(3): 1235-1240, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30001808

RESUMEN

Receptor-like protein kinase (RLKs) plays pivotal roles in plant growth and development as well as stress responses. However, little is known about the function of RLKs in Nitotiana tobacum. In the present study, we present data on NtRLK5, a novel RLK-like gene isolated from Hongda (Nitotiana tobacum L.). Expression profile analysis revealed that NtRLK5 was strongly induced by drought and salt stresses. Transient expression of NtRLK5-GFP fusion protein in protoplast showed that NtRLK5 was localized to plasma membrane. Overexpression of NtRLK5 conferred enhanced drought tolerance in transgenic Arabidopsis plants, which was attributed to not only the lower malondialdehyde (MDA) and H2O2 contents, but also the higher antioxidant enzymes activities. Moreover, the expression of several antioxidation- and stress-related genes was also significantly up-regulated in NtRLK5 transgenic plants under drought condition. Taken together, the results suggest that NtRLK5 functions as a positive regulator in drought tolerance.


Asunto(s)
Aclimatación/genética , Arabidopsis/genética , Arabidopsis/fisiología , Sequías , Nicotiana/enzimología , Plantas Modificadas Genéticamente/genética , Proteínas Quinasas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas Quinasas/genética , Nicotiana/genética
17.
Proteomics ; 17(10): e1600456, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28390150

RESUMEN

Due to their extraordinary capacity to hypertolerate and hyperaccumulate heavy metals in above-ground tissues, hyperaccumulator plant species have gained wide attention from researchers seeking biotechnologies to manage environmental heavy metal pollution. However, the molecular basis of hyperaccumulation is still far from being fully understood. Here, we used iTRAQ to perform a quantitative proteomics study of the leaves of Sedum alfredii (Crassulaceae) from hyperaccumulating population (HP) and non-hyperaccumulating population (NHP). A total of 248 proteins had constitutively higher levels in HP leaves than in NHP leaves. Cadmium (Cd) treatment led to the induction of 13 proteins in HP leaves and 33 proteins in NHP leaves. Two proteins were induced by Cd in both HP leaves and NHP leaves. The annotations for many of the proteins that were higher in HP leaves and proteins that were induced by Cd treatments were associated with vacuolar sequestration, cell wall/membrane modification, and plant defense. In addition to establishing a global empirical foundation for the study of proteins in S. alfredii, our findings relating to the differential constitutive and inducible expression of proteins open potential new research avenues and bolster previously reported suppositions about Cd hyperaccumulation in hyperaccumulator plants.

18.
BMC Genomics ; 18(1): 62, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28068898

RESUMEN

BACKGROUND: Drought stress is one of the most severe problem limited agricultural productivity worldwide. It has been reported that plants response to drought-stress by sophisticated mechanisms at both transcriptional and post-transcriptional levels. However, the precise molecular mechanisms governing the responses of tobacco leaves to drought stress and water status are not well understood. To identify genes and miRNAs involved in drought-stress responses in tobacco, we performed both mRNA and small RNA sequencing on tobacco leaf samples from the following three treatments: untreated-control (CL), drought stress (DL), and re-watering (WL). RESULTS: In total, we identified 798 differentially expressed genes (DEGs) between the DL and CL (DL vs. CL) treatments and identified 571 DEGs between the WL and DL (WL vs. DL) treatments. Further analysis revealed 443 overlapping DEGs between the DL vs. CL and WL vs. DL comparisons, and, strikingly, all of these genes exhibited opposing expression trends between these two comparisons, strongly suggesting that these overlapping DEGs are somehow involved in the responses of tobacco leaves to drought stress. Functional annotation analysis showed significant up-regulation of genes annotated to be involved in responses to stimulus and stress, (e.g., late embryogenesis abundant proteins and heat-shock proteins) antioxidant defense (e.g., peroxidases and glutathione S-transferases), down regulation of genes related to the cell cycle pathway, and photosynthesis processes. We also found 69 and 56 transcription factors (TFs) among the DEGs in, respectively, the DL vs. CL and the WL vs. DL comparisons. In addition, small RNA sequencing revealed 63 known microRNAs (miRNA) from 32 families and 368 novel miRNA candidates in tobacco. We also found that five known miRNA families (miR398, miR390, miR162, miR166, and miR168) showed differential regulation under drought conditions. Analysis to identify negative correlations between the differentially expressed miRNAs (DEMs) and DEGs revealed 92 mRNA-miRNA interactions between CL and DL plants, and 32 mRNA-miRNA interactions between DL and WL plants. CONCLUSIONS: This study provides a global view of the transcriptional and the post-transcriptional responses of tobacco under drought stress and re-watering conditions. Our results establish an empirical foundation that should prove valuable for further investigations into the molecular mechanisms through which tobacco, and plants more generally, respond to drought stress at multiple molecular genetic levels.


Asunto(s)
Sequías , MicroARNs/genética , Nicotiana/genética , Nicotiana/fisiología , Estrés Fisiológico/genética , Transcripción Genética , Agua/farmacología , Perfilación de la Expresión Génica , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , ARN Mensajero/genética , Análisis de Secuencia de ARN , Nicotiana/efectos de los fármacos , Nicotiana/crecimiento & desarrollo , Factores de Transcripción/metabolismo
19.
Anal Chem ; 89(20): 11083-11090, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28922607

RESUMEN

High-quality data analysis methodology remains a bottleneck for metabolic profiling analysis based on ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry. The present work aims to address this problem by proposing a novel data analysis strategy wherein (1) chromatographic peaks in the UPLC-QTOF data set are automatically extracted by using an advanced multiscale Gaussian smoothing-based peak extraction strategy; (2) a peak annotation stage is used to cluster fragment ions that belong to the same compound. With the aid of high-resolution mass spectrometer, (3) a time-shift correction across the samples is efficiently performed by a new peak alignment method; (4) components are registered by using a newly developed adaptive network searching algorithm; (5) statistical methods, such as analysis of variance and hierarchical cluster analysis, are then used to identify the underlying marker compounds; finally, (6) compound identification is performed by matching the extracted peak information, involving high-precision m/z and retention time, against our compound library containing more than 500 plant metabolites. A manually designed mixture of 18 compounds is used to evaluate the performance of the method, and all compounds are detected under various concentration levels. The developed method is comprehensively evaluated by an extremely complex plant data set containing more than 2000 components. Results indicate that the performance of the developed method is comparable with the XCMS. The MATLAB GUI code is available from http://software.tobaccodb.org/software/antdas .

20.
Luminescence ; 32(3): 271-276, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28032447

RESUMEN

This paper reports a convenient method for the synthesis of highly fluorescent Au nanoclusters (NCs) via electrostatically induced phase transfer. Furthermore, on the basis of an aggregation-induced fluorescence quenching mechanism, the potential application for Cu2+ sensing on the fluorescence emission of the Au NCs is discussed. These prepared fluorescent Au NCs offer acceptable sensitivity, high selectivity, and a limit of quantitation of 0.02 µM for the measurement of Cu2+ , which is lower than the maximum level (1 ppm, equals to 15.6 µM) of Cu2+ permitted in drinking water in China. This study contributes to the further development of practical applications with fluorescent NCs.


Asunto(s)
Cobre/análisis , Fluorescencia , Oro/química , Nanopartículas del Metal/química , Tamaño de la Partícula , Transición de Fase , Electricidad Estática , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA