RESUMEN
Cytoskeleton remodeling which generates force and orchestrates signaling and trafficking to govern cell migration remains poorly understood, partly due to a lack of an investigation tool with high system flexibility, spatiotemporal resolution, and computational sensitivity. Herein, we developed a multimodal superresolution imaging system-based architecture-driven quantitative (ADQ) framework in spatiotemporal-angular hyperspace to enable both identification of the optimal imaging mode with well-balanced fidelity and phototoxicity and accurate postcharacterization of microtubule remodeling. In the ADQ framework, a pixel/voxel-wise metric reflecting heterogeneous intertubule alignment was proposed with improved sensitivity over previous efforts and further incorporated with temporal features to map dynamic microtubule rearrangements. The ADQ framework was verified by assessing microtubule remodeling in drug-induced (de)polymerization, lysosome transport, and migration. Different remodeling patterns from two migration modes were successfully revealed by the ADQ framework, with a front-rear polarization for individual directed migration and a contact site-centered polarization for cell-cell interaction-induced migration in an immune response model. Meanwhile, these migration modes were found to have consistent orientation changes, which exhibited the potential of predicting migration trajectory.
Asunto(s)
Movimiento Celular , Citoesqueleto , Microtúbulos , Microtúbulos/metabolismo , Humanos , Citoesqueleto/metabolismo , Lisosomas/metabolismoRESUMEN
Identifying and protecting hotspots of endemism and species richness is crucial for mitigating the global biodiversity crisis. However, our understanding of spatial diversity patterns is far from complete, which severely limits our ability to conserve biodiversity hotspots. Here, we report a comprehensive analysis of amphibian species diversity in China, one of the most species-rich countries on Earth. Our study combines 20 y of field surveys with new molecular analyses of 521 described species and also identifies 100 potential cryptic species. We identify 10 hotspots of amphibian diversity in China, each with exceptional species richness and endemism and with exceptional phylogenetic diversity and phylogenetic endemism (based on a new time-calibrated, species-level phylogeny for Chinese amphibians). These 10 hotspots encompass 59.6% of China's described amphibian species, 49.0% of cryptic species, and 55.6% of species endemic to China. Only four of these 10 hotspots correspond to previously recognized biodiversity hotspots. The six new hotspots include the Nanling Mountains and other mountain ranges in South China. Among the 186 species in the six new hotspots, only 9.7% are well covered by protected areas and most (88.2%) are exposed to high human impacts. Five of the six new hotspots are under very high human pressure and are in urgent need of protection. We also find that patterns of richness in cryptic species are significantly related to those in described species but are not identical.
Asunto(s)
Anfibios , Biodiversidad , Filogenia , Animales , Anfibios/clasificación , China , Conservación de los Recursos NaturalesRESUMEN
Enhancing patient response to immune checkpoint inhibitors (ICIs) is crucial in cancer immunotherapy. We aim to create a data-driven mathematical model of the tumor immune microenvironment (TIME) and utilize deep reinforcement learning (DRL) to optimize patient-specific ICI therapy combined with chemotherapy (ICC). Using patients' genomic and transcriptomic data, we develop an ordinary differential equations (ODEs)-based TIME dynamic evolutionary model to characterize interactions among chemotherapy, ICIs, immune cells, and tumor cells. A DRL agent is trained to determine the personalized optimal ICC therapy. Numerical experiments with real-world data demonstrate that the proposed TIME model can predict ICI therapy response. The DRL-derived personalized ICC therapy outperforms predefined fixed schedules. For tumors with extremely low CD8 + T cell infiltration ('extremely cold tumors'), the DRL agent recommends high-dosage chemotherapy alone. For tumors with higher CD8 + T cell infiltration ('cold' and 'hot tumors'), an appropriate chemotherapy dosage induces CD8 + T cell proliferation, enhancing ICI therapy outcomes. Specifically, for 'hot tumors', chemotherapy and ICI are administered simultaneously, while for 'cold tumors', a mid-dosage of chemotherapy makes the TIME 'hotter' before ICI administration. However, in several 'cold tumors' with rapid resistant tumor cell growth, ICC eventually fails. This study highlights the potential of utilizing real-world clinical data and DRL algorithm to develop personalized optimal ICC by understanding the complex biological dynamics of a patient's TIME. Our ODE-based TIME dynamic evolutionary model offers a theoretical framework for determining the best use of ICI, and the proposed DRL agent may guide personalized ICC schedules.
Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Medicina de Precisión , InmunoterapiaRESUMEN
Structured illumination microscopy (SIM) is a powerful technique for super-resolution (SR) image reconstruction. However, conventional SIM methods require high-contrast illumination patterns, which necessitate precision optics and highly stable light sources. To overcome these challenges, we propose a new method called contrast-robust structured illumination microscopy (CR-SIM). CR-SIM employs a deep residual neural network to enhance the quality of SIM imaging, particularly in scenarios involving low-contrast illumination stripes. The key contribution of this study is the achievement of reliable SR image reconstruction even in suboptimal illumination contrast conditions. The results of our study will benefit various scientific disciplines.
RESUMEN
High throughput has become an important research direction in the field of super-resolution (SR) microscopy, especially in improving the capability of dynamic observations. In this study, we present a hexagonal lattice structured illumination microscopy (hexSIM) system characterized by a large field of view (FOV), rapid imaging speed, and high power efficiency. Our approach employs spatial light interference to generate a two-dimensional hexagonal SIM pattern, and utilizes electro-optical modulators for high-speed phase shifting. This design enables the achievement of a 210-µm diameter SIM illumination FOV when using a 100×/1.49 objective lens, capturing 2048 × 2048 pixel images at an impressive 98 frames per second (fps) single frame rate. Notably, this method attains a near 100% full field-of-view and power efficiency, with the speed limited only by the camera's capabilities. Our hexSIM demonstrates a substantial 1.73-fold improvement in spatial resolution and necessitates only seven phase-shift images, thus enhancing the imaging speed compared to conventional 2D-SIM.
RESUMEN
The distribution of species is not random in space. At the finest-resolution spatial scale, that is, field sampling locations, distributional aggregation level of different species would be determined by various factors, for example spatial autocorrelation or environmental filtering. However, few studies have quantitatively measured the importance of these factors. In this study, inspired by the statistical properties of a Markov transition model, we propose a novel additive framework to partition local multispecies distributional aggregation levels for sequential sampling-derived field biodiversity data. The framework partitions the spatial distributional aggregation of different species into two independent components: regional abundance variability and the local spatial inertia effect. Empirical studies from field amphibian surveys through line-transect sampling in southwestern China (Minya Konka) and central-southern Vietnam showed that local spatial inertia was always the dominant mechanism structuring the local occurrence and distributional aggregation of amphibians in the two regions with a latitudinal gradient from 1200 to nearly 4000 m. However, regional abundance variability is still nonnegligible in highly diverse tropical regions (i.e. Vietnam) where the altitude is not higher than 2000 m. In summary, we propose a novel framework that shows that the multispecies distributional aggregation level can be structured by two additive components. The two partitioned components could be theoretically independent. These findings are expected to deepen our understanding of the local community structure from the perspective of both spatial distribution and regional diversity patterns. The partitioning framework might have potential applications in field ecology and macroecology research.
Asunto(s)
Anfibios , Distribución Animal , Biodiversidad , Animales , Vietnam , Anfibios/fisiología , China , Modelos Biológicos , Cadenas de MarkovRESUMEN
High species diversity may result from recent rapid speciation in a 'cradle' and/or the gradual accumulation and preservation of species over time in a 'museum'. China harbours nearly 10% of angiosperm species worldwide and has long been considered as both a museum, owing to the presence of many species with hypothesized ancient origins, and a cradle, as many lineages have originated as recent topographic changes and climatic shifts-such as the formation of the Qinghai-Tibetan Plateau and the development of the monsoon-provided new habitats that promoted remarkable radiation. However, no detailed phylogenetic study has addressed when and how the major components of the Chinese angiosperm flora assembled to form the present-day vegetation. Here we investigate the spatio-temporal divergence patterns of the Chinese flora using a dated phylogeny of 92% of the angiosperm genera for the region, a nearly complete species-level tree comprising 26,978 species and detailed spatial distribution data. We found that 66% of the angiosperm genera in China did not originate until early in the Miocene epoch (23 million years ago (Mya)). The flora of eastern China bears a signature of older divergence (mean divergence times of 22.04-25.39 Mya), phylogenetic overdispersion (spatial co-occurrence of distant relatives) and higher phylogenetic diversity. In western China, the flora shows more recent divergence (mean divergence times of 15.29-18.86 Mya), pronounced phylogenetic clustering (co-occurrence of close relatives) and lower phylogenetic diversity. Analyses of species-level phylogenetic diversity using simulated branch lengths yielded results similar to genus-level patterns. Our analyses indicate that eastern China represents a floristic museum, and western China an evolutionary cradle, for herbaceous genera; eastern China has served as both a museum and a cradle for woody genera. These results identify areas of high species richness and phylogenetic diversity, and provide a foundation on which to build conservation efforts in China.
Asunto(s)
Biodiversidad , Magnoliopsida/clasificación , Filogenia , China , Conservación de los Recursos Naturales/métodos , Evolución Molecular , Mapeo Geográfico , Análisis de Regresión , Análisis Espacio-TemporalRESUMEN
Simultaneously investigating the influence of multiple early temperament dimensions on children's eating behaviors through infant and young child feeding practices may be essential for developing optimal intervention strategies. This longitudinal study gathered data at two assessment points: Time 1, evaluation of infant and young child feeding practices and children's temperament when they were between 6 and 12 months, and Time 2, assessment of children's eating behaviors at age 2. This study included sociodemographic characteristics, the Child Eating Behavior Questionnaire for Toddlers (CEBQ-T), the short form of Children Behavior Questionnaire (Revised IBQ-RSF), and the Infant Feeding Style Questionnaire (IFSQ) in eastern China. Structural equation modeling (SEM) was utilized to examine the pathways from three dimensions of early temperament to five types of children's eating behaviors mediated by three styles of infant and young child feeding practices. A total of 972 children, children's mean age was 14.58 ± 5.11 months, 464 (47.74%) being girls, while the mothers' mean age was 30.23 ± 3.56 years. Effortful control exhibited significant effects on food responsiveness and satiety responsiveness mediated by responsive feeding. Additionally, effortful control influenced enjoyment of food and satiety responsiveness mediated by restrictive feeding. Surgency had a significant effect on food responsiveness mediated by indulgent feeding. Negative affectivity impacted satiety responsiveness, enjoyment of food, and food responsiveness mediated by responsive feeding. This longitudinal study delineates the pathways from early temperament to eating behaviors mediated by infant and young child feeding practices among children aged 6-23 months. These findings highlight the need to prioritize intervention programs aimed at nurturing early temperament through appropriate infant and young child feeding practices to promote healthy eating behaviors for upper- and middle-income countries (UMICs) with similar contexts.
RESUMEN
Polylactic acid microplastics (PLA-MPs), biobased plastics made from renewable resources, are considered to be a potential solution for alleviating the pollution pressure of plastics; however, the potential environmental risks of PLA-MPs must be further evaluated. In this study, the effects of PLA-MPs on the tadpoles of Pelophylax nigromaculatus were investigated by designing different PLA-MP exposure experiments. We found that PLA-MPs negatively affected the survival, growth and development of tadpoles. In addition, in open field tests, PLA-MPs also reduced tadpole locomotion while resulting in more repetitive searching behavior within a restricted area. This effect was more pronounced at higher concentrations of PLA-MPs (20â¯mg/mL) and in combination with the heavy metal Cd2+. In the tank tests, PLA-MPs increased tadpole aggregation, and their combined effect with Cd2+ resulted in a tendency for tadpole aggregation to increase and then decrease, with the distribution tending to favor aggregation in edge regions. PLA-MPs also strongly inhibited the spatiotemporal exploratory activities of tadpoles in the tanks. This study provides a more detailed investigation of the behavioral effects of PLA-MPs on tadpoles and provides a theoretical basis for subsequent ecotoxicological studies of PLA-MPs.
Asunto(s)
Conducta Animal , Larva , Microplásticos , Poliésteres , Contaminantes Químicos del Agua , Animales , Larva/efectos de los fármacos , Poliésteres/toxicidad , Conducta Animal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Ranidae/fisiología , Ranidae/crecimiento & desarrollo , Locomoción/efectos de los fármacos , Cadmio/toxicidadRESUMEN
Spectral confocal sensors are effective for measuring displacements. The core of the spectral confocal measurement system is a dispersive objective lens that uses optical dispersion to establish a one-to-one correspondence between the focusing position and wavelength, achieving high-resolution measurements in the longitudinal direction. Despite significant progress in dispersive objective lenses for spectral confocal sensor systems, challenges such as a limited dispersion range, high cost, and insufficient measurement accuracy persist. To expand the measurement range and improve the accuracy of the spectral confocal sensor, we designed a compact, long-axial dispersion objective lens. This lens has a simple structure that requires only six lens elements, two of which form cemented doublets. The system length is 58 mm, with a working distance of 46 ± 6 mm and a dispersion range of 12 mm within the wavelength range of 450-656 nm. The lens has an object-side numerical aperture (NA) of 0.22 and an image-side NA between 0.198 and 0.24, ensuring high light energy utilization. Finally, a spectral confocal measurement system was constructed based on the designed dispersive objective lens, and performance evaluation tests were conducted. The test results showed that the system achieved a resolution of 0.15 µm and a maximum linear error of ±0.7 µm, demonstrating high-precision measurement capabilities. The proposed lens design enables the development of more portable and cost-effective spectral confocal sensors.
RESUMEN
Climate change is considered one of the major systemic risks facing the world in the 21st century. To address climate change, China has adopted a series of climate policies, but the uncertainty brought about by frequent climate policy issuance has increased pressure on enterprises, which may not be conducive to enterprises reducing emissions. This paper uses data on 1211 listed companies on the A-share market in China from 2012 to 2022 to study the impact of climate policy uncertainty on enterprise pollutant emissions. The research findings show that climate policy uncertainty increases corporate pollution emissions; climate policy uncertainty mainly generates negative impacts on enterprise environmental regulation, social responsibility, and R&D investment, thereby negatively affecting enterprise emissions reduction. Further heterogeneity analysis shows that climate policy uncertainty in China has a more significant impact on non-state-owned enterprises, technology-intensive enterprises, lightly polluting enterprises, and enterprises in western regions. These findings emphasize the importance of enterprise social responsibility, environmental regulation, and R&D investment in enterprise emissions reduction and provide policy implications for Chinese enterprises to optimize their energy-saving and emission reduction strategies in the face of climate policy uncertainty.
Asunto(s)
Cambio Climático , China , Incertidumbre , Contaminación Ambiental , Política Ambiental , Contaminación del Aire/análisisRESUMEN
We propose a quasi-confocal microscopy autofocus system incorporating an electrically tunable lens (ETL) to achieve differential detection. The ETL changes its focal length to collect differential curves at speeds <300â Hz, allowing selective locking onto desired focal layers and high-speed differential operations close to the locked focal plane. By segmenting the system's pupil, the interference between the outgoing and incoming near-infrared beams is avoided, thereby greatly improving the signal-to-noise ratio. This ultra-sensitive system, with a focus drift accuracy better than 1/22 focal depth (â¼20â nm @100× objective), provides a new, to the best of our knowledge, implementation pathway to meet the requirements of various microscopy techniques.
RESUMEN
The self-healable polymers that can repair physical damage autonomously to extend their lifetime and reduce maintenance costs are promising intelligent materials. However, utilizing shape memory to facilitate self-repair is unusual at present. In this work, a series of poly(acrylic acid)-polytetrahydrofuran-poly(acrylic acid) polymers (PAA-PTMG-PAA, diPAA-PTMG) are synthesized as a switching phase and healing accelerator to blend into poly(vinyl alcohol) (PVA). The water swelling rate of the blend is up to 400.0% at 1/1 molecular weight ratio of PTMG/PAA and 20.0 wt % blend ratio of diPAA-PTMG to PVA, and its crystallization is changed significantly under wet conditions. The blend membrane exhibits not only a good hydrothermal-response shape memory effect but also a favorable self-healing behavior. The tensile strength and elongation at break are 12.4 MPa and 320.0% after healing at 25 °C, respectively. In particular, the wound membrane can achieve a better self-healing effect with the assistance of shape memory at 37 °C, and the elongation at the break increased to 515.9% after healing. The membrane is not cytotoxic, so it will be a promising biomedical material.
RESUMEN
Although numerous studies on the impacts of climate change on biodiversity have been published, only a handful are focused on the intraspecific level or consider population-level models (separate models per population). We endeavored to fill this knowledge gap relative to the Qinghai-Tibetan plateau (QTP) by combining species distribution modeling (SDMs) with population genetics (i.e., population-level models) and phylogenetic methods (i.e., phylogenetic tree reconstruction and phylogenetic diversity analyses). We applied our models to 11 endemic and widely distributed herpetofauna species inhabiting high elevations in the QTP. We aimed to determine the influence of environmental heterogeneity on species' responses to climate change, the magnitude of climate-change impacts on intraspecific diversity, and the relationship between species range loss and intraspecific diversity losses under 2 shared socioeconomic pathways (SSP245 and SSP585) and 3 future periods (2050s, 2070s, and 2090s). The effects of global climatic change were more pronounced at the intraspecific level (22% of haplotypes lost and 36% of populations lost) than the morphospecies level in the SSP585 climate change scenario. Maintenance of genetic diversity was in general determined by a combination of factors including range changes, species genetic structure, and the part of the range predicted to be lost. This is owing to the fact that the loss and survival of populations were observed in species irrespective of the predicted range changes (contraction or expansion). In the southeast (mountainous regions), climate change had less of an effect on range size (>100% in 3 species) than in central and northern QTP plateau regions (range size <100% in all species). This may be attributed to environmental heterogeneity, which provided pockets of suitable climate in the southeast, whereas ecosystems in the north and central regions were homogeneous. Generally, our results imply that mountainous regions with high environmental heterogeneity and high genetic diversity may buffer the adverse impacts of climate change on species distribution and intraspecific diversity. Therefore, genetic structure and characteristics of the ecosystem may be crucial for conservation under climate change.
Impactos del cambio climático sobre la diversidad de herpetofauna en la meseta Qinghai-Tíbet Región Aunque se han publicado numerosos estudios sobre los impactos del cambio climática en la biodiversidad, son muy pocos los que se enfocan en el nivel intraespecífico o que consideran modelos a nivel poblacional (modelos separados por población). Intentamos cerrar este vacío de conocimiento en relación con la meseta Qinghai-Tíbet (MQT) con la combinación entre modelos de distribución de especies (MDE) y genética poblacional (modelos a nivel poblacional) y métodos filogenéticos (reconstrucción de árboles filogenéticos y análisis de diversidad filogenética). Aplicamos nuestros modelos a once especies endémicas de herpetofauna con distribución amplia en las elevaciones más altas de la MQT. Nos planteamos determinar la influencia de la heterogeneidad de las especies sobre la respuesta de las especies al cambio climático, la magnitud de los impactos del cambio climático sobre la diversidad intraespecífica y la relación entre la pérdida de distribución de la especie y las pérdidas de diversidad intraespecífica bajo dos vías socioeconómicas (SSP245 y SSP585) y tres periodos del futuro (2050s, 2070s y 2090s). Los efectos del cambio climático global fueron más pronunciados a nivel intraespecífico (22% de pérdida en los haplotipos y 36% en las poblaciones) que al nivel morfoespecie en el escenario de cambio climático SSP585. El mantenimiento de la diversidad genética casi siempre estuvo determinado por una combinación de factores que incluyen cambios en la distribución, estructura genética de las especies y la parte de la distribución que se pronosticó se perdería. Esto se debe a que observamos la pérdida y supervivencia de las poblaciones sin importar los cambios pronosticados en la distribución (contracción o expansión). En las regiones montañosas del sureste, el cambio climático tuvo un efecto menor sobre la distribución (>100% en tres especies) comparado con las regiones de la meseta central y del norte de la MQT (distribución <100% en todas las especies). Esto puede atribuirse a la heterogeneidad ambiental, la cual proporciona recovecos de clima adecuado en el sureste, mientras que los ecosistemas en las regiones central y norte fueron homogéneos. De manera general, nuestros resultados implican que las regiones montañosas con una elevada heterogeneidad ambiental y una gran diversidad genética podrían reducir los impactos adversos del cambio climático sobre la distribución de las especies y la diversidad intraespecífica. Por lo tanto, la estructura genética y las características del ecosistema pueden ser cruciales para conservar bajo el cambio climático.
Asunto(s)
Cambio Climático , Ecosistema , Tibet , Filogenia , Conservación de los Recursos NaturalesRESUMEN
Recombinant human TPO (rhTPO) is effective for refractory/relapsed primary immune thrombocytopenia (ITP), but optimal dosing regimen remains elusive. In this multicenter, randomized, controlled trial, a total of 282 adult ITP patients (mean age 47.3 years; 82 men) with a platelet count ≤30 × 109/L or >30 × 109/L with active bleeding randomly received a once daily (QD) subcutaneous injection of 7500 U (n = 64) or 15000 U rhTPO for 14 injections, or 15000 U or 30000 U rhTPO once every other day (QOD) for 7 injections. The primary outcomes included change from baseline in platelet count and total response rate (TRR) on day 14. On day 14, the median increase of platelet count from baseline was the highest in the 15000-U QD group (167.5 × 109/L, interquartile range [IQR] 23.0-295.0 × 109/L), followed by the 30000-U QOD group (57.5 × 109/L, IQR 9.0-190.0 × 109/L) (ANCOVA P < .001; P = .266 with baseline count as a covariate). The TRR on day 14 was also the highest in the 15000-U QD group (63.2%), followed by the 30000-U QOD group (59.7%). The rate of grade 3 and above adverse events did not differ among the four groups. There were no new safety concerns. All 4 regimens are safe and well-tolerated. The 30000-U QOD regimen is practically indistinguishable in efficacy to the 15000-U QD regimen.
What is the context? Relative thrombopoietin deficiency is implicated in primary immune thrombocytopenia (ITP), which is characterized by increased platelet destruction and impaired megakaryopoiesis.Patients who are innately unresponsive to or have relapsed after glucocorticoid treatment have limited treatment options.Recombinant human thrombopoietin (rhTPO) improves treatment response of primary ITP patients when added to high-dose dexamethasone.What is new? This trial sought to identify an optimal dosing regimen of rhTPO for patients who had failed or relapsed after glucocorticoid therapy.Of the 4 regimens, once daily 15000 U rhTPO for 14 injections yielded the greatest median increase in platelet count (167.5 × 109/L) from baseline and attained the highest total response rate on day 14 (63.2%).30000 U rhTPO once every other day for 7 injections was effective in rapidly increasing platelet counts in the first 7 days.All 4 regimens were safe and well-tolerated.What is the impact? The 30000 U rhTPO once every other day regimen may offer an effective and safe regimen with less frequent injections, but future trials with longer follow-up are needed.
Asunto(s)
Púrpura Trombocitopénica Idiopática , Masculino , Adulto , Humanos , Persona de Mediana Edad , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Púrpura Trombocitopénica Idiopática/inducido químicamente , Trombopoyetina/efectos adversos , Recuento de Plaquetas , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Hemorragia/inducido químicamenteRESUMEN
In this study, we developed a novel, compact, and efficient structured illumination microscopy (SIM) system, to our best knowledge. A binary hexagonal lattice pattern was designed and implemented on a digital micromirror device (DMD), resulting in a projection-based structured-light generation. By leveraging the combination of the high-speed switching capability of the DMD with a high-speed CMOS camera, the system can capture 1024×1024 pixels images at a 200 fps frame rate when provided with sufficient illumination power. The loading of the hexagonal lattice pattern reduces the number of images required for reconstruction to seven, and by utilizing the DMD modulating characteristics on the illumination path, there is no need to use bulky mechanical structures for phase shifting. We designed a compact system with 110m m×150m m×170m m dimensions that displayed a 1.61 resolution enhancement for fluorescent particle and biological sample imaging.
RESUMEN
Environmental attitude, value and awareness are widely believed to help reach the goal of cutting global food waste, but these psychological and cognitive factors are not always good predictors of wasteful behaviours. Notably, it is still unclear how the role of pro-environmental attitude (PEA) in reducing household food waste (HFW) changes with grocery shopping distance. To this end, using 7319 households survey data from China, this study investigates the moderating effect of shopping distance on the link between PEA and HFW behaviour. The results of Tobit regressions show that PEA is an important predictor of actual HFW behaviour in the absence of the constraint of shopping distance. However, the expansion of shopping distance will weaken the positive role of PEA in reducing HFW. It indicates that, due to the temporal and financial constraints generated by shopping distance, there is a certain degree of hypothetical deviation between the wasteful behaviours that individuals actually exhibit and their stated PEA. Our findings, from the perspective of the moderating effect of shopping distance, explain why some individuals deviate from their stated PEA in HFW behaviour, which provides a new insight into the generation of 'attitude-behaviour' gap. Therefore, policy interventions that merely enhancing environmental education may have limited effect on reducing food waste; instead, the promotion of citizen environmental ethics should be combined with efforts to improve the accessibility of retail infrastructures.
RESUMEN
Seasonal variation has been shown to influence symbiotic bacterial community composition and structure in amphibians. It is still unknown how the symbiotic bacterial community assembly changes during different seasons, especially for amphibians who are particularly sensitive to environmental change. We found significant differences in the composition and diversity (alpha and beta diversity) of amphibian skin and gut bacteria. Co-occurrences network analysis showed that seasonal variation reduced the microbial network complexity of amphibians from summer to autumn. The normalized stochastic ratio (NST) and phylogenetic bin-based null model analysis (iCAMP) models showed that the same result that stochastic processes was the major factor regulating the symbiotic bacterial community assembly mechanisms of amphibians. From summer to autumn, the symbiotic bacterial community assembly mechanisms declined in the contribution of stochastic processes, while increasing in the contribution of deterministic processes. Dispersal limitation was the dominant microbial assembly mechanism, followed by homogeneous selection, and then heterogeneous selection in the symbiotic bacterial community communities of amphibians between summer and autumn. Furthermore, higher niche width of the symbiotic bacterial community of amphibians was found in summer than autumn. Overall, these results demonstrated that seasonal variation influenced amphibian symbiotic bacterial community between summer and autumn.
Asunto(s)
Anfibios , Bacterias , Animales , Estaciones del Año , Filogenia , Bacterias/genética , Procesos EstocásticosRESUMEN
Structured illumination microscopy (SIM), a super-resolution technology, has a wide range of applications in life sciences. In this study, we present an electro-optic high-speed phase-shift super-resolution microscopy imaging system including 2D SIM, total internal reflection fluorescence-SIM, and 3D SIM modes. This system uses galvanometers and an electro-optic modulator to flexibly and quickly control the phase and direction of structured illumination patterns. Moreover, its design consists of precise timing for improved acquisition speed and software architecture for real-time reconstruction. The highest acquisition rate achieved was 151 frames/s, while the highest real-time super-resolution reconstruction frame rate achieved was over 25 frames/s.
RESUMEN
The flora of China is well known for its high diversity and endemism. Identifying centers of endemism and designating conservation priorities are essential goals for biodiversity studies. However, there is no comprehensive study from a rigorous phylogenetic perspective to understand patterns of diversity and endemism and to guide biodiversity conservation in China. We conducted a spatial phylogenetic analysis of the Chinese angiosperm flora at the generic level to identify centers of neo- and paleo-endemism. Our results indicate that: (i) the majority of grid cells in China with significantly high phylogenetic endemism (PE) were located in the mountainous regions; (ii) four of the nine centers of endemism recognized, located in northern and western China, were recognized for the first time; (iii) arid and semiarid regions in Northwest China were commonly linked to significant PE, consistent with other spatial phylogenetic studies worldwide; and (iv) six high-priority conservation gaps were detected by overlaying the boundaries of China's nature reserves on all significant PE cells. Overall, we conclude that the mountains of southern and northern China contain both paleo-endemics (ancient relictual lineages) and neo-endemics (recently diverged lineages). The areas we highlight as conservation priorities are important for broad-scale planning, especially in the context of evolutionary history preservation.