Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 115(6): 1699-1715, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37300848

RESUMEN

Plant architecture, lodging resistance, and yield are closely associated with height. In this paper, we report the identification and characterization of two allelic EMS-induced mutants of Zea mays, xyl-1, and xyl-2 that display dwarf phenotypes. The mutated gene, ZmXYL, encodes an α-xylosidase which functions in releasing xylosyl residue from a ß-1,4-linked glucan chain. Total α-xylosidase activity in the two alleles is significantly decreased compared to wild-type plants. Loss-of-function mutants of ZmXYL resulted in a decreased xylose content, an increased XXXG content in xyloglucan (XyG), and a reduced auxin content. We show that auxin has an antagonistic effect with XXXG in promoting cell divisions within mesocotyl tissue. xyl-1 and xyl-2 were less sensitive to IAA compared to B73. Based on our study, a model is proposed that places XXXG, an oligosaccharide derived from XyG and the substrate of ZmXYL, as having a negative impact on auxin homeostasis resulting in the dwarf phenotypes of the xyl mutants. Our results provide a insight into the roles of oligosaccharides released from plant cell walls as signals in mediating plant growth and development.


Asunto(s)
Xilosidasas , Zea mays , Zea mays/genética , Ácidos Indolacéticos , Oligosacáridos/química , Plantas/genética
2.
Plant Physiol ; 193(3): 1834-1848, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37403650

RESUMEN

Plant metaxylem vessels provide physical support to promote upright growth and the transport of water and nutrients. A detailed characterization of the molecular network controlling metaxylem development is lacking. However, knowledge of the events that regulate metaxylem development could contribute to the development of germplasm with improved yield. In this paper, we screened an EMS-induced B73 mutant library, which covers 92% of maize (Zea mays) genes, to identify drought-sensitive phenotypes. Three mutants were identified, named iqd27-1, iqd27-2, and iqd27-3, and genetic crosses showed that they were allelic to each other. The causal gene in these 3 mutants encodes the IQ domain-containing protein ZmIQD27. Our study showed that defective metaxylem vessel development likely causes the drought sensitivity and abnormal water transport phenotypes in the iqd27 mutants. ZmIQD27 was expressed in the root meristematic zone where secondary cell wall deposition is initiated, and loss-of-function iqd27 mutants exhibited a microtubular arrangement disorder. We propose that association of functional ZmIQD27 with microtubules is essential for correct targeted deposition of the building blocks for secondary cell wall development in maize.


Asunto(s)
Meristema , Zea mays , Zea mays/metabolismo , Plantones/genética , Sequías , Agua/metabolismo
3.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673792

RESUMEN

Arbuscular mycorrhizal fungi symbiosis plays important roles in enhancing plant tolerance to biotic and abiotic stresses. Aquaporins have also been linked to improved drought tolerance in plants and the regulation of water transport. However, the mechanisms that underlie this association remain to be further explored. In this study, we found that arbuscular mycorrhiza fungi symbiosis could induce the gene expression of the aquaporin ZmTIP2;3 in maize roots. Moreover, compared with the wild-type plants, the maize zmtip2;3 mutant also showed a lower total biomass, colonization rate, relative water content, and POD and SOD activities after arbuscular mycorrhiza fungi symbiosis under drought stress. qRT-PCR assays revealed reduced expression levels of stress genes including LEA3, P5CS4, and NECD1 in the maize zmtip2;3 mutant. Taken together, these data suggest that ZmTIP2;3 plays an important role in promoting maize tolerance to drought stress during arbuscular mycorrhiza fungi symbiosis.


Asunto(s)
Acuaporinas , Resistencia a la Sequía , Micorrizas , Proteínas de Plantas , Simbiosis , Zea mays , Acuaporinas/metabolismo , Acuaporinas/genética , Regulación de la Expresión Génica de las Plantas , Micorrizas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Estrés Fisiológico , Simbiosis/genética , Zea mays/microbiología , Zea mays/genética , Zea mays/metabolismo
4.
Physiol Mol Biol Plants ; 30(5): 757-774, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38846454

RESUMEN

The Transporter 1/Peptide Transporter Family (NPF) is essential for the uptake and transport of nitrate nitrogen. Significant increases in nitrogen have been increasingly reported for many mycorrhizal plants, but there are few reports on maize. Here, we have identified the maize NPF family and screened for arbuscular mycorrhiza fungi (AMF) induced NPFs. In this study, a systematic analysis of the maize NPF gene family was performed. A total of 82 NPF genes were identified in maize. ZmNPF4.5 was strongly induced by AMF in both low and high nitrogen. Lotus japonicus hairy root-induced transformation experiments showed that ZmNPF4.5 promoter-driven GUS activity was restricted to cells containing tufts. Yeast backfill experiments indicate that ZmNPF4.5 functions in nitrate uptake. Therefore, we speculate that ZmNPF4.5 is a key gene for nitrate-nitrogen uptake in maize through the mycorrhizal pathway. This is a reference value for further exploring the acquisition of nitrate-nitrogen by maize through AMF pathway. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01464-3.

5.
Plant J ; 111(6): 1660-1675, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35861696

RESUMEN

Maize (Zea mays) is an important cereal crop worldwide. However, its yield and quality are adversely affected by salt stress resulting from soil hypersalinity. Exploring the regulatory mechanisms of stress responses is of vital importance to increase maize seed production. In the present study, we screened ethyl methanesulfonate-induced maize mutants and identified a salt-tolerant mutant. A single base was mutated in ZmWRKY20, leading to the formation of a truncated protein variant. A detailed phenotypic analysis revealed that this mutant had significantly higher resistance to wilting and lower reactive oxygen species levels than the inbred line B73. ZmWRKY20 showed transcriptional activity in yeast and specifically bound W-boxes according to the results of our yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays. Overexpression of ZmWRKY20 decreased salt tolerance in maize. Transcriptome profiling revealed that ZmWRKY20 overexpression extensively reprogrammed genes involved in regulating defense and oxidation-reduction responses. The results substantiate that ZmWRKY20 is directly targeted to the basic leucine zipper (bZIP) motif in the transcription factor ZmbZIP111. It was also verified that ZmWRKY20 interacts with ZmWRKY115 and both proteins act jointly to enhance ZmbZIP111 repression. The results indicate that the ZmWRKY20 and ZmWRKY115 transcription factors interact in the nucleus, leading to repression of ZmbZIP111 expression by directly binding its promoter, and increase the sensitivity of maize seedlings to salt stress. The current study improves our understanding of the complicated responses of maize to salt stress.


Asunto(s)
Tolerancia a la Sal , Zea mays , Metanosulfonato de Etilo/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Tolerancia a la Sal/genética , Suelo , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Zea mays/metabolismo
6.
BMC Plant Biol ; 23(1): 603, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38030972

RESUMEN

BACKGROUND: Plant respiratory burst oxidase homolog (Rboh) gene family produces reactive oxygen species (ROS), and it plays key roles in plant-microbe interaction. Most Rboh gene family-related studies mainly focused on dicotyledonous plants; however, little is known about the roles of Rboh genes in gramineae. RESULTS: A total of 106 Rboh genes were identified in seven gramineae species, including Zea mays, Sorghum bicolor, Brachypodium distachyon, Oryza sativa, Setaria italica, Hordeum vulgare, and Triticum aestivum. The Rboh protein sequences showed high similarities, suggesting that they may have conserved functions across different species. Duplication mode analysis detected whole-genome/segmental duplication (WGD)/(SD) and dispersed in the seven species. Interestingly, two local duplication (LD, including tandem and proximal duplication) modes were found in Z. mays, S. italica and H. vulgare, while four LD were detected in T. aestivum, indicating that these genes may have similar functions. Collinearity analysis indicated that Rboh genes are at a stable evolution state in all the seven species. Besides, Rboh genes from Z. mays were closely related to those from S. bicolor, consistent with the current understanding of plant evolutionary history. Phylogenetic analysis showed that the genes in the subgroups I and II may participate in plant-AM fungus symbiosis. Cis-element analysis showed that different numbers of elements are related to fungal induction in the promoter region. Expression profiles of Rboh genes in Z. mays suggested that Rboh genes had distinct spatial expression patterns. By inoculation with AM fungi, our transcriptome analysis showed that the expression of Rboh genes varies upon AM fungal inoculation. In particularly, ZmRbohF was significantly upregulated after inoculation with AM fungi. pZmRbohF::GUS expression analyses indicated that ZmRbohF was induced by arbuscular mycorrhizal fungi in maize. By comparing WT and ZmRbohF mutant, we found ZmRbohF had limited impact on the establishment of maize-AM fungi symbiosis, but play critical roles in regulating the proper development of arbuscules. CONCLUSIONS: This study provides a comprehensive analysis of the evolution relationship of Rboh genes in seven gramineae species. Results showed that several Rboh genes regulate maize-AM fungal symbiosis process. This study provides valuable information for further studies of Rboh genes in gramineae.


Asunto(s)
Micorrizas , Micorrizas/fisiología , Zea mays/metabolismo , Filogenia , Simbiosis , Raíces de Plantas/genética , Regulación de la Expresión Génica de las Plantas
7.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37373558

RESUMEN

Phytosterols are natural active substances widely found in plants and play an important role in hypolipidemia, antioxidants, antitumor, immunomodulation, plant growth, and development. In this study, phytosterols were extracted and identified from the seed embryos of 244 maize inbred lines. Based on this, a genome-wide association study (GWAS) was used to predict the possible candidate genes responsible for phytosterol content; 9 SNPs and 32 candidate genes were detected, and ZmSCYL2 was identified to be associated with phytosterol accumulation. We initially confirmed its functions in transgenic Arabidopsis and found that mutation of ZmSCYL2 resulted in slow plant growth and a significant reduction in sterol content, while overexpression of ZmSCYL2 accelerated plant growth and significantly increased sterol content. These results were further confirmed in transgenic tobacco and suggest that ZmSCYL2 was closely related to plant growth; overexpression of ZmSCYL2 not only facilitated plant growth and development but also promoted the accumulation of phytosterols.


Asunto(s)
Arabidopsis , Fitosteroles , Fitosteroles/genética , Estudio de Asociación del Genoma Completo , Esteroles , Semillas/genética , Arabidopsis/genética
8.
J Proteome Res ; 21(12): 2905-2919, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36351196

RESUMEN

Rice (Oryza sativa L.) is an important staple crop, particularly in Asia, and abiotic stress conditions easily reduce its yields. Salt stress is one of the critical factors affecting rice growth and yield. In this study, a tandem mass tag (TMT)-based comparative peptidomics analysis of rice seedlings under salt stress was conducted. Rice seedlings were exposed to 50 and 150 mM NaCl for 24 and 72 h, respectively, and the root and shoot tissues of different treatment groups were collected separately for peptidomics analysis. A total of 911 and 1263 nonredundant peptides were identified in two pooled shoot tissue samples, while there were 770 and 672 nonredundant peptides in two pooled root tissue samples, respectively. Compared with the control groups, dozens to hundreds of differentially expressed peptides (DEPs) were characterized in all treatment groups. To explore the potential functions of these DEPs, we analyzed the basic characteristics of DEPs and further analyzed the annotated Gene Ontology terms according to their precursor proteins. Several DEP precursor proteins were closely related to the response to salt stress, and some were derived from the functional domains of their corresponding precursors. The germination rate and cotyledon greening rate of transgenic Arabidopsis expressing two DEPs, OsSTPE2 and OsSTPE3, were significantly enhanced under salt stress. The described workflow enables the discovery of a functional pipeline for the characterization of the plant peptidome and reveals two new plant peptides that confer salinity tolerance to plants. Data are available via ProteomeXchange with identifier PXD037574.


Asunto(s)
Arabidopsis , Oryza , Oryza/genética , Plantones , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino , Estrés Fisiológico/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Péptidos/genética , Péptidos/metabolismo , Plantas Modificadas Genéticamente/metabolismo
9.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36012605

RESUMEN

High salinity seriously affects crop growth and yield. Abscisic acid-, stress-, and ripening-induced (ASR) proteins play an important role in plant responses to multiple abiotic stresses. In this study, we identified a new salt-induced ASR gene in rice (OsASR6) and functionally characterized its role in mediating salt tolerance. Transcript levels of OsASR6 were upregulated under salinity stress, H2O2 and abscisic acid (ABA) treatments. Nuclear and cytoplasmic localization of the OsASR6 protein were confirmed. Meanwhile, a transactivation activity assay in yeast demonstrated no self-activation ability. Furthermore, transgenic rice plants overexpressing OsASR6 showed enhanced salt and oxidative stress tolerance as a result of reductions in H2O2, malondialdehyde (MDA), Na/K and relative electrolyte leakage. In contrast, OsASR6 RNAi transgenic lines showed opposite results. A higher ABA content was also measured in the OsASR6 overexpressing lines compared with the control. Moreover, OsNCED1, a key enzyme of ABA biosynthesis, was found to interact with OsASR6. Collectively, these results suggest that OsASR6 serves primarily as a functional protein, enhancing tolerance to salt stress, representing a candidate gene for genetic manipulation of new salinity-resistant lines in rice.


Asunto(s)
Oryza , Ácido Abscísico/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Salino/genética , Tolerancia a la Sal/genética , Estrés Fisiológico/genética
10.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430699

RESUMEN

Amplicon sequencing of bacterial or fungal marker sequences is currently the main method for the study of endophytic microorganisms in plants. However, it cannot obtain all types of microorganisms, including bacteria, fungi, protozoa, etc., in samples, nor compare the relative content between endophytic microorganisms and plants and between different types of endophytes. Therefore, it is necessary to develop a better analysis strategy for endophytic microorganism investigation. In this study, a new analysis strategy was developed to obtain endophytic microbiome information from plant transcriptome data. Results showed that the new strategy can obtain the composition of microbial communities and the relative content between plants and endophytic microorganisms, and between different types of endophytic microorganisms from the plant transcriptome data. Compared with the amplicon sequencing method, more endophytic microorganisms and relative content information can be obtained with the new strategy, which can greatly broaden the research scope and save the experimental cost. Furthermore, the advantages and effectiveness of the new strategy were verified with different analysis of the microbial composition, correlation analysis, inoculant content test, and repeatability test.


Asunto(s)
Endófitos , Microbiota , Transcriptoma
11.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35743040

RESUMEN

Starch directly determines the grain yield and quality. The key enzymes participating in the process of starch synthesis have been cloned and characterized. Nevertheless, the regulatory mechanisms of starch synthesis remain unclear. In this study, we identified a novel starch regulatory gene, ZmCBM48-1, which contained a carbohydrate-binding module 48 (CBM48) domain. ZmCBM48-1 was highly expressed in the maize endosperm and was localized in the plastids. Compared with the wild type lines, the overexpression of ZmCBM48-1 in rice altered the grain size and 1000-grain weight, increased the starch content, and decreased the soluble sugar content. Additionally, the transgenic rice seeds exhibited an alterant endosperm cell shape and starch structure. Meanwhile, the physicochemical characteristics (gelatinization properties) of starch were influenced in the transgenic lines of the endosperm compared with the wild type seeds. Furthermore, ZmCBM48-1 played a positive regulatory role in the starch synthesis pathway by up-regulating several starch synthesis-related genes. Collectively, the results presented here suggest that ZmCBM48-1 acts as a key regulatory factor in starch synthesis, and could be helpful for devising strategies for modulating starch production for a high yield and good quality in maize endosperm.


Asunto(s)
Endospermo , Oryza , Grano Comestible/metabolismo , Endospermo/genética , Endospermo/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Zea mays/genética , Zea mays/metabolismo
12.
Int J Mol Sci ; 23(9)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35563623

RESUMEN

Maize (Zeamays L.) is an essential food crop worldwide, but it is highly susceptible to salt stress, especially at the seedling stage. In this study, we conducted physiological and comparative transcriptome analyses of seedlings of maize inbred lines An'nong876 paternal (cmh15) and An'nong876 maternal (CM37) under salt stress. The cmh15 seedlings were more salt-tolerant and had higher relative water content, lower electrolyte leakage, and lower malondialdehyde levels in the leaves than CM37. We identified 2559 upregulated and 1770 downregulated genes between salt-treated CM37 and the controls, and 2757 upregulated and 2634 downregulated genes between salt-treated cmh15 and the controls by RNA sequencing analysis. Gene ontology functional enrichment analysis of the differentially expressed genes showed that photosynthesis-related and oxidation-reduction processes were deeply involved in the responses of cmh15 and CM37 to salt stress. We also found differences in the hormone signaling pathway transduction and regulation patterns of transcription factors encoded by the differentially expressed genes in both cmh15 and CM37 under salt stress. Together, our findings provide insights into the molecular networks that mediate salt stress tolerance of maize at the seedling stage.


Asunto(s)
Transcriptoma , Zea mays , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estrés Salino/genética , Plantones/metabolismo , Estrés Fisiológico/genética , Zea mays/metabolismo
13.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34769354

RESUMEN

Heat shock transcription factors (HSFs) play important roles in plant growth, development, and stress responses. However, the function of these transcription factors in abiotic stress responses in maize (Zea mays) remains largely unknown. In this study, we characterized a novel HSF transcription factor gene, ZmHsf08, from maize. ZmHsf08 was highly homologous to SbHsfB1, BdHsfB1, and OsHsfB1, and has no transcriptional activation activity. The expression profiles demonstrated that ZmHsf08 was differentially expressed in various organs of maize and was induced by salt, drought, and abscisic acid (ABA) treatment. Moreover, the overexpression of ZmHsf08 in maize resulted in enhanced sensitivity to salt and drought stresses, displaying lower survival rates, higher reactive oxygen species (ROS) levels, and increased malondialdehyde (MDA) contents compared with wild-type (WT) plants. Furthermore, RT-qPCR analyses revealed that ZmHsf08 negatively regulates a number of stress/ABA-responsive genes under salt and drought stress conditions. Collectively, these results indicate that ZmHsf08 plays a negative role in response to salt and drought stresses in maize.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Estrés Salino , Estrés Fisiológico , Zea mays/fisiología , Factores de Transcripción del Choque Térmico , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Zea mays/genética , Zea mays/metabolismo
14.
J Integr Plant Biol ; 63(9): 1671-1680, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33650757

RESUMEN

Genome editing by clustered regularly interspaced short palindromic sequences (CRISPR)/CRISPR-associated protein 9 (Cas9) has revolutionized functional gene analysis and genetic improvement. While reporter-assisted CRISPR/Cas systems can greatly facilitate the selection of genome-edited plants produced via stable transformation, this approach has not been well established in seed crops. Here, we established the seed fluorescence reporter (SFR)-assisted CRISPR/Cas9 systems in maize (Zea mays L.), using the red fluorescent DsRED protein expressed in the endosperm (En-SFR/Cas9), embryos (Em-SFR/Cas9), or both tissues (Em/En-SFR/Cas9). All three SFRs showed distinct fluorescent patterns in the seed endosperm and embryo that allowed the selection of seeds carrying the transgene of having segregated the transgene out. We describe several case studies of the implementation of En-SFR/Cas9, Em-SFR/Cas9, and Em/En- SFR/Cas9 to identify plants not harboring the genome-editing cassette but carrying the desired mutations at target genes in single genes or in small-scale mutant libraries, and report on the successful generation of single-target mutants and/or mutant libraries with En-SFR/Cas9, Em-SFR/Cas9, and Em/En-SFR/Cas9. SFR-assisted genome editing may have particular value for application scenarios with a low transformation frequency and may be extended to other important monocot seed crops.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Genes Reporteros , Proteínas Luminiscentes/genética , Zea mays/genética
15.
BMC Plant Biol ; 20(1): 206, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393173

RESUMEN

BACKGROUND: Fungus infection in staple grains affects the food storage and threatens food security. The Aspergillus flavus is known to infect multiple grains and produce mycotoxin Aflatoxin B1, which is mutagenic, teratogenic and causes immunosuppression in animals. However, the molecular mechanism of maize resistance to A. flavus is largely unknown. RESULTS: Here we used corn kernels to investigate resistance genes to A. flavus using genome-wide association study (GWAS) of 313 inbred lines. We characterized the resistance levels of kernels after inoculating with A. flavus. The GWAS with 558,529 SNPs identified four associated loci involving 29 candidate genes that were linked to seed development, resistance or infection, and involved in signal pathways, seed development, germination, dormancy, epigenetic modification, and antimicrobial activity. In addition, a few candidate genes were also associated with several G-protein signaling and phytohormones that might involve in synergistic work conferring different resistance during seed development. Expression of 16 genes out of 29 during kernel development was also associated with resistance levels. CONCLUSIONS: We characterized the resistance levels of 313 maize kernels after inoculating with A. flavus, and found four associated loci and 16 candidate maize genes. The expressed 16 genes involved in kernel structure and kernel composition most likely contribute to mature maize kernels' resistance to A. flavus, and in particular, in the development of pericarp. The linked candidate genes could be experimentally transformed to validate and manipulate fungal resistance. Thus this result adds value to maize kernels in breeding programs.


Asunto(s)
Aspergillus flavus/fisiología , Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/inmunología , Zea mays/genética , Enfermedades de las Plantas/microbiología , Semillas/genética , Semillas/inmunología , Semillas/microbiología , Zea mays/inmunología , Zea mays/microbiología
16.
Plant Cell Rep ; 39(4): 445-455, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31912218

RESUMEN

KEY MESSAGE: An AP2 family gene CBX1 is involved in mycorrhizal symbiosis and growth of Lotus japonicus. APETALA 2 (AP2) transcriptional regulator is highly conserved in plants. CBX1 from Lotus japonicus is a member of AP2 family. AMF (Arbuscular mycorrhizal fungi) inoculation experiment demonstrated that expression of CBX1 was significantly induced by AMF. Further promoter analysis showed that the - 764 to - 498 bp region of the CBX1 promoter containing CTTC motif is the AMF responsive region. Functional analysis of cbx1 mutant suggested CBX1 is critical for mycorrhizal symbiosis, especially for arbuscule formation. Moreover, under noncolonized condition, overexpression of CBX1 reduced the root length of L. japonicus but increased the size of root system and shoot length, whereas cbx1 mutant reduced the root size and shoot length, but not effect on root length. In addition, cbx1 altered activity of monolignol biosynthetic gene and increased lignin levels. Collectively, these data indicated that CBX1 is a positive regulator of symbiotic activity and plays roles in the growth of L. japonicus.


Asunto(s)
Lotus/microbiología , Micorrizas/metabolismo , Proteínas de Plantas/metabolismo , Simbiosis/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Lignina/biosíntesis , Lignina/genética , Lignina/metabolismo , Lotus/genética , Lotus/crecimiento & desarrollo , Lotus/metabolismo , Mutación , Micorrizas/genética , Micorrizas/crecimiento & desarrollo , Proteínas de Plantas/genética , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , RNA-Seq , Simbiosis/fisiología , Factores de Transcripción/genética , Transcriptoma/genética , Regulación hacia Arriba
17.
Plant Cell Rep ; 39(1): 135-148, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31659429

RESUMEN

KEY MESSAGE: Overexpression in rice of the isolated salt-responsive WRKY114 gene from maize resulted in decreases in both salt-stress tolerance and abscisic acid sensitivity by regulating stress- and abscisic acid-related gene expression. WRKYs are an important family of transcription factors that widely participate in plant development, defense regulation and stress responses. In this research, WRKY114 encoding a WRKY transcription factor was cloned from maize (Zea mays L.). ZmWRKY114 expression was down-regulated by salt stress but up-regulated by abscisic acid (ABA) treatments. ZmWRKY114 is a nuclear protein with no transcriptional activation ability in yeast. A yeast one-hybrid experiment confirmed that ZmWRKY114 possesses an ability to specifically bind to W-boxes. The heterologous overexpression of ZmWRKY114 in rice enhanced the salt-stress sensitivity as indicated by the transgenic plants having reduced heights, root lengths and survival rates under salt-stress conditions. In addition, transgenic plants also retained lower proline contents, but greater malondialdehyde contents and relative electrical leakage levels. Additionally, ZmWRKY114-overexpressing plants showed less sensitivity to ABA during the early seedling growth stage. Further analyses indicated that transgenic rice accumulated higher levels of ABA than wild-type plants under salt-stress conditions. Transcriptome and quantitative real-time PCR analyses indicated that a few regulatory genes, which play vital roles in controlling plant stress responses and/or the ABA signaling pathway, were affected by ZmWRKY114 overexpression when rice was treated with NaCl. Thus, ZmWRKY114 may function as a negative factor that participates in salt-stress responses through an ABA-mediated pathway.


Asunto(s)
Oryza/genética , Proteínas de Plantas/metabolismo , Tolerancia a la Sal , Factores de Transcripción/metabolismo , Zea mays/genética , Ácido Abscísico/farmacología , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/efectos de los fármacos , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Salino/genética , Tolerancia a la Sal/genética , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Factores de Transcripción/genética , Zea mays/metabolismo
18.
Plant Mol Biol ; 99(1-2): 1-15, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30519826

RESUMEN

KEY MESSAGE: Genome-wide association study of maize plant architecture using F1 populations can better dissect various genetic effects that can provide precise guidance for genetic improvement in maize breeding. Maize grain yield has increased at least eightfold during the past decades. Plant architecture, including plant height, leaf angle, leaf length, and leaf width, has been changed significantly to adapt to higher planting density. Although the genetic architecture of these traits has been dissected using different populations, the genetic basis remains unclear in the F1 population. In this work, we perform a genome-wide association study of the four traits using 573 F1 hybrids with a mixed linear model approach and QTXNetwork mapping software. A total of 36 highly significant associated quantitative trait SNPs were identified for these traits, which explained 51.86-79.92% of the phenotypic variation and were contributed mainly by additive, dominance, and environment-specific effects. Heritability as a result of environmental interaction was more important for leaf angle and leaf length, while major effects (a, aa, and d) were more important for leaf width and plant height. The potential breeding values of the superior lines and superior hybrids were also predicted, and these values can be applied in maize breeding by direct selection of superior genotypes for the associated quantitative trait SNPs. A total of 108 candidate genes were identified for the four traits, and further analysis was performed to screen the potential genes involved in the development of maize plant architecture. Our results provide new insights into the genetic architecture of the four traits, and will be helpful in marker-assisted breeding for maize plant architecture.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Zea mays/genética , Mapeo Cromosómico , Genotipo , Fenotipo , Fitomejoramiento , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Zea mays/anatomía & histología
19.
BMC Plant Biol ; 19(1): 273, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31234785

RESUMEN

BACKGROUND: Heterosis is the superior performance of F1 hybrids relative to their parental lines for a wide range of traits. In this study, expression profiling and heterosis associated genes were analyzed by RNA sequencing (RNA-Seq) in seedlings of the maize hybrid An'nong 591 and its parental lines under control and heat stress conditions. RESULTS: Through performing nine pairwise comparisons, the maximum number of differentially expressed genes (DEGs) was detected between the two parental lines, and the minimum number was identified between the F1 hybrid and the paternal lines under both conditions, which suggested greater genetic contribution of the paternal line to heat stress tolerance. Gene Ontology (GO) enrichment analysis of the 4518 common DEGs indicated that GO terms associated with diverse stress responses and photosynthesis were highly overrepresented in the 76 significant terms of the biological process category. A total of 3970 and 7653 genes exhibited nonadditive expression under control and heat stress, respectively. Among these genes, 2253 (56.8%) genes overlapped, suggesting that nonadditive genes tend to be conserved in expression. In addition, 5400 nonadditive genes were found to be specific for heat stress condition, and further GO analysis indicated that terms associated with stress responses were significantly overrepresented, and 60 genes were assigned to the GO term response to heat. Pathway enrichment analysis indicated that 113 genes were involved in spliceosome metabolic pathways. Nineteen of the 33 overlapping genes assigned to the GO term response to heat showed significantly higher number of alternative splicing (AS) events under heat stress than under control conditions, suggesting that AS of these genes play an important role in response to heat stress. CONCLUSIONS: This study reveals the transcriptomic divergence of the maize F1 hybrid and its parental lines under control and heat stress conditions, and provides insight into the underlying molecular mechanisms of heterosis and the response to heat stress in maize.


Asunto(s)
Genes de Plantas , Respuesta al Choque Térmico/genética , Zea mays/genética , Genoma de Planta , Vigor Híbrido , Hibridación Genética , Transcriptoma , Zea mays/fisiología
20.
Plant Physiol ; 176(4): 2761-2771, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29440594

RESUMEN

Flowering time (heading date) and panicle branch number are important agronomic traits that determine yield in rice (Oryza sativa). The activation of flowering requires histone methylation, but the roles of trimethylation of Lys 4 of histone 3 (H3K4me3) in modulating heading date and panicle development are unclear. Here, we showed that the COMPASS-like complex promotes flowering and panicle branching. The rice (Oryza sativa) WD40 protein OsWDR5a interacts with the TRITHORAX-like protein OsTrx1/SET domain group protein 723 (SDG723) to form the core components of the COMPASS-like complex. Plants in which OsWDR5a or OsTrx1 expression was decreased by RNA interference produced fewer secondary branches and less grain and exhibited a delayed heading date under long-day and short-day conditions, whereas loss of OsWDR5a function resulted in embryo lethality. OsWDR5a binds to Early heading date 1 to regulate its H3K4me3 and expression levels. Together, our results show that the COMPASS-like complex promotes flowering and panicle development and suggest that modulation of H3K4me3 levels by the COMPASS-like complex is critical for rice development.


Asunto(s)
Flores/genética , Complejos Multiproteicos/genética , Oryza/genética , Proteínas de Plantas/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Lisina/metabolismo , Metilación , Complejos Multiproteicos/metabolismo , Mutación , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Interferencia de ARN , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA