Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(7): 1149-1160, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37202489

RESUMEN

B cell zone reticular cells (BRCs) form stable microenvironments that direct efficient humoral immunity with B cell priming and memory maintenance being orchestrated across lymphoid organs. However, a comprehensive understanding of systemic humoral immunity is hampered by the lack of knowledge of global BRC sustenance, function and major pathways controlling BRC-immune cell interactions. Here we dissected the BRC landscape and immune cell interactome in human and murine lymphoid organs. In addition to the major BRC subsets underpinning the follicle, including follicular dendritic cells, PI16+ RCs were present across organs and species. As well as BRC-produced niche factors, immune cell-driven BRC differentiation and activation programs governed the convergence of shared BRC subsets, overwriting tissue-specific gene signatures. Our data reveal that a canonical set of immune cell-provided cues enforce bidirectional signaling programs that sustain functional BRC niches across lymphoid organs and species, thereby securing efficient humoral immunity.


Asunto(s)
Linfocitos B , Células del Estroma , Ratones , Humanos , Animales , Inmunidad Humoral , Células Dendríticas Foliculares , Homeostasis
2.
Nat Immunol ; 24(7): 1138-1148, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37202490

RESUMEN

Fibroblastic reticular cells (FRCs) direct the interaction and activation of immune cells in discrete microenvironments of lymphoid organs. Despite their important role in steering innate and adaptive immunity, the age- and inflammation-associated changes in the molecular identity and functional properties of human FRCs have remained largely unknown. Here, we show that human tonsillar FRCs undergo dynamic reprogramming during life and respond vigorously to inflammatory perturbation in comparison to other stromal cell types. The peptidase inhibitor 16 (PI16)-expressing reticular cell (PI16+ RC) subset of adult tonsils exhibited the strongest inflammation-associated structural remodeling. Interactome analysis combined with ex vivo and in vitro validation revealed that T cell activity within subepithelial niches is controlled by distinct molecular pathways during PI16+ RC-lymphocyte interaction. In sum, the topological and molecular definition of the human tonsillar stromal cell landscape reveals PI16+ RCs as a specialized FRC niche at the core of mucosal immune responses in the oropharynx.


Asunto(s)
Tonsila Palatina , Linfocitos T , Humanos , Fibroblastos , Linfocitos/metabolismo , Inflamación/metabolismo , Proteínas Portadoras/metabolismo , Glicoproteínas/metabolismo
3.
Nat Immunol ; 22(4): 510-519, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33707780

RESUMEN

Fibroblastic reticular cells (FRCs) determine the organization of lymphoid organs and control immune cell interactions. While the cellular and molecular mechanisms underlying FRC differentiation in lymph nodes and the splenic white pulp have been elaborated to some extent, in Peyer's patches (PPs) they remain elusive. Using a combination of single-cell transcriptomics and cell fate mapping in advanced mouse models, we found that PP formation in the mouse embryo is initiated by an expansion of perivascular FRC precursors, followed by FRC differentiation from subepithelial progenitors. Single-cell transcriptomics and cell fate mapping confirmed the convergence of perivascular and subepithelial FRC lineages. Furthermore, lineage-specific loss- and gain-of-function approaches revealed that the two FRC lineages synergistically direct PP organization, maintain intestinal microbiome homeostasis and control anticoronavirus immune responses in the gut. Collectively, this study reveals a distinct mosaic patterning program that generates key stromal cell infrastructures for the control of intestinal immunity.


Asunto(s)
Linaje de la Célula , Fibroblastos/inmunología , Inmunidad Mucosa , Mucosa Intestinal/inmunología , Intestino Delgado/inmunología , Ganglios Linfáticos Agregados/inmunología , Animales , Comunicación Celular , Células Cultivadas , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Microbioma Gastrointestinal , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Interacciones Huésped-Patógeno , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/virología , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Intestino Delgado/virología , Ratones Endogámicos C57BL , Ratones Noqueados , Virus de la Hepatitis Murina/inmunología , Virus de la Hepatitis Murina/patogenicidad , Ganglios Linfáticos Agregados/metabolismo , Ganglios Linfáticos Agregados/microbiología , Ganglios Linfáticos Agregados/virología , Fenotipo , Análisis de la Célula Individual , Transcriptoma
4.
Nat Immunol ; 22(8): 1042-1051, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34267375

RESUMEN

Pathogens and vaccines that produce persisting antigens can generate expanded pools of effector memory CD8+ T cells, described as memory inflation. While properties of inflating memory CD8+ T cells have been characterized, the specific cell types and tissue factors responsible for their maintenance remain elusive. Here, we show that clinically applied adenovirus vectors preferentially target fibroblastic stromal cells in cultured human tissues. Moreover, we used cell-type-specific antigen targeting to define critical cells and molecules that sustain long-term antigen presentation and T cell activity after adenovirus vector immunization in mice. While antigen targeting to myeloid cells was insufficient to activate antigen-specific CD8+ T cells, genetic activation of antigen expression in Ccl19-cre-expressing fibroblastic stromal cells induced inflating CD8+ T cells. Local ablation of vector-targeted cells revealed that lung fibroblasts support the protective function and metabolic fitness of inflating memory CD8+ T cells in an interleukin (IL)-33-dependent manner. Collectively, these data define a critical fibroblastic niche that underpins robust protective immunity operating in a clinically important vaccine platform.


Asunto(s)
Adenoviridae/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Interleucina-33/inmunología , Activación de Linfocitos/inmunología , Células del Estroma/inmunología , Adenoviridae/genética , Animales , Línea Celular Tumoral , Quimiocina CCL19/metabolismo , Quimera/genética , Epítopos de Linfocito T/inmunología , Fibroblastos/citología , Fibroblastos/metabolismo , Vectores Genéticos/inmunología , Humanos , Pulmón/citología , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vacunación
5.
Nat Immunol ; 21(6): 649-659, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32424359

RESUMEN

Efficient generation of germinal center (GC) responses requires directed movement of B cells between distinct microenvironments underpinned by specialized B cell-interacting reticular cells (BRCs). How BRCs are reprogrammed to cater to the developing GC remains unclear, and studying this process is largely hindered by incomplete resolution of the cellular composition of the B cell follicle. Here we used genetic targeting of Cxcl13-expressing cells to define the molecular identity of the BRC landscape. Single-cell transcriptomic analysis revealed that BRC subset specification was predetermined in the primary B cell follicle. Further topological remodeling of light and dark zone follicular dendritic cells required CXCL12-dependent crosstalk with B cells and dictated GC output by retaining B cells in the follicle and steering their interaction with follicular helper T cells. Together, our results reveal that poised BRC-defined microenvironments establish a feed-forward system that determines the efficacy of the GC reaction.


Asunto(s)
Oscuridad , Células Dendríticas Foliculares/inmunología , Células Dendríticas Foliculares/metabolismo , Centro Germinal/inmunología , Centro Germinal/metabolismo , Inmunomodulación/efectos de la radiación , Luz , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biomarcadores , Comunicación Celular , Quimiocina CXCL12/metabolismo , Ratones , Ratones Transgénicos , Fenotipo , Análisis de la Célula Individual , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
6.
Immunity ; 52(5): 794-807.e7, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32298648

RESUMEN

Lymphocyte homeostasis and immune surveillance require that T and B cells continuously recirculate between secondary lymphoid organs. Here, we used intravital microscopy to define lymphocyte trafficking routes within the spleen, an environment of open blood circulation and shear forces unlike other lymphoid organs. Upon release from arterioles into the red pulp sinuses, T cells latched onto perivascular stromal cells in a manner that was independent of the chemokine receptor CCR7 but sensitive to Gi protein-coupled receptor inhibitors. This latching sheltered T cells from blood flow and enabled unidirectional migration to the bridging channels and then to T zones, entry into which required CCR7. Inflammatory responses modified the chemotactic cues along the perivascular homing paths, leading to rapid block of entry. Our findings reveal a role for vascular structures in lymphocyte recirculation through the spleen, indicating the existence of separate entry and exit routes and that of a checkpoint located at the gate to the T zone.


Asunto(s)
Movimiento Celular/inmunología , Receptores CCR7/inmunología , Bazo/inmunología , Linfocitos T/inmunología , Animales , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Humanos , Vigilancia Inmunológica/inmunología , Microscopía Intravital , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Linfocitos/citología , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores CCR7/genética , Receptores CCR7/metabolismo , Transducción de Señal/inmunología , Bazo/citología , Bazo/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo
7.
Immunity ; 53(5): 1015-1032.e8, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33207209

RESUMEN

Solitary intestinal lymphoid tissues such as cryptopatches (CPs) and isolated lymphoid follicles (ILFs) constitute steady-state activation hubs containing group 3 innate lymphoid cells (ILC3) that continuously produce interleukin (IL)-22. The outer surface of CPs and ILFs is demarcated by a poorly characterized population of CD11c+ cells. Using genome-wide single-cell transcriptional profiling of intestinal mononuclear phagocytes and multidimensional flow cytometry, we found that CP- and ILF-associated CD11c+ cells were a transcriptionally distinct subset of intestinal cDCs, which we term CIA-DCs. CIA-DCs required programming by CP- and ILF-resident CCR6+ ILC3 via lymphotoxin-ß receptor signaling in cDCs. CIA-DCs differentially expressed genes associated with immunoregulation and were the major cellular source of IL-22 binding protein (IL-22BP) at steady state. Mice lacking CIA-DC-derived IL-22BP exhibited diminished expression of epithelial lipid transporters, reduced lipid resorption, and changes in body fat homeostasis. Our findings provide insight into the design principles of an immunoregulatory checkpoint controlling nutrient absorption.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Inmunidad Innata , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Ganglios Linfáticos Agregados/citología , Ganglios Linfáticos Agregados/inmunología , Receptores de Interleucina/biosíntesis , Animales , Biomarcadores , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Inmunofenotipificación , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Metabolismo de los Lípidos , Ratones , Ratones Transgénicos , ARN Citoplasmático Pequeño/genética , Receptores de Interleucina/genética , Transducción de Señal
8.
Nat Immunol ; 17(12): 1388-1396, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27798617

RESUMEN

Fibroblastic reticular cells (FRCs) of secondary lymphoid organs form distinct niches for interaction with hematopoietic cells. We found here that production of the cytokine IL-15 by FRCs was essential for the maintenance of group 1 innate lymphoid cells (ILCs) in Peyer's patches and mesenteric lymph nodes. Moreover, FRC-specific ablation of the innate immunological sensing adaptor MyD88 unleashed IL-15 production by FRCs during infection with an enteropathogenic virus, which led to hyperactivation of group 1 ILCs and substantially altered the differentiation of helper T cells. Accelerated clearance of virus by group 1 ILCs precipitated severe intestinal inflammatory disease with commensal dysbiosis, loss of intestinal barrier function and diminished resistance to colonization. In sum, FRCs act as an 'on-demand' immunological 'rheostat' by restraining activation of group 1 ILCs and thereby preventing immunopathological damage in the intestine.


Asunto(s)
Citrobacter rodentium/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Enterobacteriaceae/inmunología , Fibroblastos/inmunología , Interleucina-15/metabolismo , Linfocitos/inmunología , Virus de la Hepatitis Murina/inmunología , Animales , Células Cultivadas , Inmunidad Innata , Ganglios Linfáticos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Ganglios Linfáticos Agregados/patología , Células TH1/inmunología , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo
9.
Immunity ; 48(1): 120-132.e8, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29343433

RESUMEN

Group 3 innate lymphoid cells (ILC3s) sense environmental signals and are critical for tissue integrity in the intestine. Yet, which signals are sensed and what receptors control ILC3 function remain poorly understood. Here, we show that ILC3s with a lymphoid-tissue-inducer (LTi) phenotype expressed G-protein-coupled receptor 183 (GPR183) and migrated to its oxysterol ligand 7α,25-hydroxycholesterol (7α,25-OHC). In mice lacking Gpr183 or 7α,25-OHC, ILC3s failed to localize to cryptopatches (CPs) and isolated lymphoid follicles (ILFs). Gpr183 deficiency in ILC3s caused a defect in CP and ILF formation in the colon, but not in the small intestine. Localized oxysterol production by fibroblastic stromal cells provided an essential signal for colonic lymphoid tissue development, and inflammation-induced increased oxysterol production caused colitis through GPR183-mediated cell recruitment. Our findings show that GPR183 promotes lymphoid organ development and indicate that oxysterol-GPR183-dependent positioning within tissues controls ILC3 activity and intestinal homeostasis.


Asunto(s)
Colitis/metabolismo , Linfocitos/metabolismo , Tejido Linfoide/metabolismo , Oxiesteroles/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Movimiento Celular/genética , Colitis/inmunología , Colitis/patología , Colon/inmunología , Colon/patología , Citocinas/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ligandos , Linfocitos/patología , Tejido Linfoide/patología , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal
10.
Immunity ; 47(1): 80-92.e4, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28709801

RESUMEN

Lymph nodes (LNs) are strategically situated throughout the body at junctures of the blood vascular and lymphatic systems to direct immune responses against antigens draining from peripheral tissues. The current paradigm describes LN development as a programmed process that is governed through the interaction between mesenchymal lymphoid tissue organizer (LTo) cells and hematopoietic lymphoid tissue inducer (LTi) cells. Using cell-type-specific ablation of key molecules involved in lymphoid organogenesis, we found that initiation of LN development is dependent on LTi-cell-mediated activation of lymphatic endothelial cells (LECs) and that engagement of mesenchymal stromal cells is a succeeding event. LEC activation was mediated mainly by signaling through receptor activator of NF-κB (RANK) and the non-canonical NF-κB pathway and was steered by sphingosine-1-phosphate-receptor-dependent retention of LTi cells in the LN anlage. Finally, the finding that pharmacologically enforced interaction between LTi cells and LECs promotes ectopic LN formation underscores the central LTo function of LECs.


Asunto(s)
Células Endoteliales/fisiología , Ganglios Linfáticos/fisiología , Células Madre Mesenquimatosas/fisiología , Organogénesis , Animales , Diferenciación Celular , Células Cultivadas , Coristoma , Embrión de Mamíferos , Receptor beta de Linfotoxina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , FN-kappa B/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Transducción de Señal
11.
Immunol Rev ; 306(1): 108-122, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34866192

RESUMEN

Fibroblastic reticular cells (FRCs) are specialized stromal cells of lymphoid organs that generate the structural foundation of the tissue and actively interact with immune cells. Distinct FRC subsets position lymphocytes and myeloid cells in specialized niches where they present processed or native antigen and provide essential growth factors and cytokines for immune cell activation and differentiation. Niche-specific functions of FRC subpopulations have been defined using genetic targeting, high-dimensional transcriptomic analyses, and advanced imaging methods. Here, we review recent findings on FRC-immune cell interaction and the elaboration of FRC development and differentiation. We discuss how imaging approaches have not only shaped our understanding of FRC biology, but have critically advanced the niche concept of immune cell maintenance and control of immune reactivity.


Asunto(s)
Fibroblastos , Células del Estroma , Comunicación Celular , Diferenciación Celular , Perfilación de la Expresión Génica , Humanos , Ganglios Linfáticos
12.
J Immunol ; 210(6): 774-785, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36715496

RESUMEN

Hallmarks of life-threatening, coronavirus-induced disease include dysregulated antiviral immunity and immunopathological tissue injury. Nevertheless, the sampling of symptomatic patients overlooks the initial inflammatory sequela culminating in severe coronavirus-induced disease, leaving a fundamental gap in our understanding of the early mechanisms regulating anticoronavirus immunity and preservation of tissue integrity. In this study, we delineate the innate regulators controlling pulmonary infection using a natural mouse coronavirus. Within hours of infection, the cellular landscape of the lung was transcriptionally remodeled altering host metabolism, protein synthesis, and macrophage maturation. Genetic perturbation revealed that these transcriptional programs were type I IFN dependent and critically controlled both host cell survival and viral spread. Unrestricted viral replication overshooting protective IFN responses culminated in increased IL-1ß and alarmin production and triggered compensatory neutrophilia, interstitial inflammation, and vascular injury. Thus, type I IFNs critically regulate early viral burden, which serves as an innate checkpoint determining the trajectory of coronavirus dissemination and immunopathology.


Asunto(s)
Infecciones por Coronavirus , Interferón Tipo I , Virus de la Hepatitis Murina , Neumonía , Animales , Ratones , Inmunidad Innata , Antivirales/farmacología , Replicación Viral
13.
Artículo en Inglés | MEDLINE | ID: mdl-38626354

RESUMEN

RATIONALE: Immune checkpoint inhibitor-related pneumonitis is a serious autoimmune event affecting up to 20% of patients with non-small cell lung cancer, yet the factors underpinning its development in some patients and not others are poorly understood. OBJECTIVES: To investigate the role of autoantibodies and autoreactive T cells against surfactant-related proteins in the development of pneumonitis. METHODS: The study cohort consisted of non-small cell lung cancer patients who gave blood samples before and during immune checkpoint inhibitor treatment. Serum was used for proteomics analyses and to detect autoantibodies present during pneumonitis. T cell stimulation assays and single-cell RNA sequencing were performed to investigate the specificity and functionality of peripheral autoreactive T cells. The findings were confirmed in a validation cohort comprising patients with non-small cell lung cancer and patients with melanoma. MEASUREMENTS AND MAIN RESULTS: Across both cohorts, patients who developed pneumonitis had higher pre-treatment levels of immunoglobulin G autoantibodies targeting surfactant protein-B. At the onset of pneumonitis, these patients also exhibited higher frequencies of CD4+ interferon-gamma-positive surfactant protein B-specific T cells, and expanding T cell clonotypes recognizing this protein, accompanied by a pro-inflammatory serum proteomic profile. CONCLUSIONS: Our data suggest that the co-occurrence of surfactant protein-B-specific immunoglobulin G autoantibodies and CD4+ T cells is associated with the development of pneumonitis during ICI therapy. Pre-treatment levels of these antibodies may represent a potential biomarker for elevated risk of developing pneumonitis and on-treatment levels may provide a diagnostic aid. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

14.
Eur J Immunol ; 53(9): e2250355, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36991561

RESUMEN

The lymph node (LN) is home to resident macrophage populations that are essential for immune function and homeostasis, but key factors controlling this niche are undefined. Here, we show that fibroblastic reticular cells (FRCs) are an essential component of the LN macrophage niche. Genetic ablation of FRCs caused rapid loss of macrophages and monocytes from LNs across two in vivo models. Macrophages co-localized with FRCs in human LNs, and murine single-cell RNA-sequencing revealed that FRC subsets broadly expressed master macrophage regulator CSF1. Functional assays containing purified FRCs and monocytes showed that CSF1R signaling was sufficient to support macrophage development. These effects were conserved between mouse and human systems. These data indicate an important role for FRCs in maintaining the LN parenchymal macrophage niche.


Asunto(s)
Fibroblastos , Transducción de Señal , Ratones , Humanos , Animales , Macrófagos , Ganglios Linfáticos
15.
PLoS Pathog ; 17(2): e1009289, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33577624

RESUMEN

Bacterial extracellular DNA (eDNA) and activated platelets have been found to contribute to biofilm formation by Streptococcus mutans on injured heart valves to induce infective endocarditis (IE), yet the bacterial component directly responsible for biofilm formation or platelet adhesion remains unclear. Using in vivo survival assays coupled with microarray analysis, the present study identified a LiaR-regulated PspC domain-containing protein (PCP) in S. mutans that mediates bacterial biofilm formation in vivo. Reverse transcriptase- and chromatin immunoprecipitation-polymerase chain reaction assays confirmed the regulation of pcp by LiaR, while PCP is well-preserved among streptococcal pathogens. Deficiency of pcp reduced in vitro and in vivo biofilm formation and released the eDNA inside bacteria floe along with reduced bacterial platelet adhesion capacity in a fibrinogen-dependent manner. Therefore, LiaR-regulated PCP alone could determine release of bacterial eDNA and binding to platelets, thus contributing to biofilm formation in S. mutans-induced IE.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , ADN Bacteriano/metabolismo , Endocarditis/microbiología , Adhesividad Plaquetaria , Infecciones Estreptocócicas/microbiología , Streptococcus mutans/crecimiento & desarrollo , Animales , Proteínas Bacterianas/genética , Endocarditis/metabolismo , Endocarditis/patología , Espacio Extracelular/metabolismo , Voluntarios Sanos , Interacciones Huésped-Patógeno , Humanos , Ratas , Infecciones Estreptocócicas/metabolismo , Infecciones Estreptocócicas/patología , Streptococcus mutans/genética
16.
J Immunol ; 206(2): 257-263, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33397739

RESUMEN

Stromal cells have for a long time been viewed as structural cells that support distinct compartments within lymphoid tissues and little more. Instead, an active cross-talk between endothelial and fibroblastic stromal cells drives the maturation of lymphoid niches, a relationship that is recapitulated during lymph node organogenesis, steady-state conditions, and following inflammation. In this review, we go over recent advances in genetic models and high-resolution transcriptomic analyses that have propelled the finer resolution of the stromal cell infrastructure of lymph nodes, revealing that the distinct subsets are strategically positioned to deliver a catered mixture of niche factors to interacting immune cell populations. Moreover, we discuss how changes in the activation state of poised stromal cell-underpinned niches rather than on-demand differentiation of new stromal cell subsets govern the efficient interaction of Ag, APC, and cognate B and T lymphocytes during adaptive immune responses.


Asunto(s)
Ganglios Linfáticos/inmunología , Linfocitos/inmunología , Células del Estroma/fisiología , Inmunidad Adaptativa , Animales , Diferenciación Celular , Microambiente Celular , Humanos , Activación de Linfocitos
17.
BMC Anesthesiol ; 23(1): 345, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848832

RESUMEN

BACKGROUND: There is no consensus regarding the superiority of volatile or total intravenous anesthesia (TIVA) in reducing the incidence of postoperative pulmonary complications (PPCs) after lung resection surgery (LRS). Thus, the aim of this study was to investigate the different anesthetic regimens and the incidence of PPCs in patients who underwent LRS. We hypothesized that TIVA is associated with a lower incidence of PPCs than volatile anesthesia. METHODS: This was a retrospective cohort study of patients who underwent LRS at Taipei Veterans General Hospital between January 2016 and December 2020. The patients' charts were reviewed and data on patient characteristics, perioperative features, and postoperative outcomes were extracted and analyzed. The patients were categorized into TIVA or volatile anesthesia groups and their clinical data were compared. Propensity score matching was performed to reduce potential selection bias. The primary outcome was the incidence of PPCs, whereas the secondary outcomes were the incidences of other postoperative events, such as length of hospital stay (LOS) and postoperative nausea and vomiting (PONV). RESULTS: A total of 392 patients each were included in the TIVA and volatile anesthesia groups. There was no statistically significant difference in the incidence of PPCs between the volatile anesthesia and TIVA groups. The TIVA group had a shorter LOS (p < 0.001) and a lower incidence of PONV than the volatile anesthesia group (4.6% in the TIVA group vs. 8.2% in the volatile anesthesia group; p = 0.041). However, there were no significant differences in reintubation, 30-day readmission, and re-operation rates between the two groups. CONCLUSIONS: There was no significant difference between the incidence of PPCs in patients who underwent LRS under TIVA and that in patients who underwent LRS under volatile anesthesia. However, TIVA had shorter LOS and lower incidence of PONV which may be a better choice for maintenance of anesthesia in patients undergoing LRS.


Asunto(s)
Náusea y Vómito Posoperatorios , Propofol , Humanos , Náusea y Vómito Posoperatorios/inducido químicamente , Propofol/efectos adversos , Anestésicos Intravenosos/efectos adversos , Incidencia , Anestesia Intravenosa , Tiempo de Internación , Estudios Retrospectivos , Puntaje de Propensión , Anestesia General/efectos adversos , Pulmón
18.
J Clin Monit Comput ; 36(5): 1379-1385, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34953137

RESUMEN

The Oxygen Reserve Index (ORi™) is a dimensionless parameter with a value between 0 and 1. It is related to the real-time oxygenation status in the moderate hyperoxic range. The purpose of this study is to investigate the added warning time provided by different ORi alarm triggers and the continuous trends of ORi, SpO2, and PaO2. We enrolled 25 patients who were scheduled for elective surgery under general anesthesia with planned arterial catheterization before induction. The participants received standardized preoxygenation, induction, and intubation. The patients remained apneic and ventilation was resumed when the SpO2 fell below 90%. The ORi and SpO2 were recorded every ten seconds and arterial blood was sampled every minute, from preoxygenation to resumed ventilation. Alarm triggers set to the ORi peak and the ORi 0.55 values provided 300 and 145 s of significant added warning time compared to SpO2 (p < 0.0001). The coefficient of determination was 0.56 between the ORi and the PaO2 ≤ 240 mmHg and showed a positive correlation. The ORi enables the clinicians to monitor the patients' oxygen status during induction of general anesthesia and can improve the detection of impending desaturation. However, further studies are needed to assess its clinical potential in the high hyperoxic range.The protocol was retrospectively registered at ClinicalTrials.gov on July 21, 2021 (NCT04976504).


Asunto(s)
Hiperoxia , Oxígeno , Anestesia General , Humanos , Monitoreo Fisiológico/métodos , Respiración
19.
Dyes Pigm ; 1892021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33746312

RESUMEN

A novel aggregation-induced emission (AIE) structure containing a tetraphenylethene (TPE) unit covalently linked with a merocyanine (MC) unit was synthesized and investigated in semi-aqueous solutions with 90% water fraction. The open-form structure of red-emissive MC unit combined with TPE unit was utilized as a bi-fluorophoric sensor to detect lead(II) ion, which could be transformed from the close-form structure of non-emissive SP unit upon UV exposure. Moreover, the TPE unit as an energy donor with the blue-green photoluminescence (PL) emission at 480 nm was combined with the MC unit as an energy acceptor with the red PL emission at 635 nm. Due to the Förster resonance energy transfer (FRET) processes, the bi-fluorophoric sensor produced more efficient ratiometric PL behavior to induce a stronger red PL emission than that of the mono-fluorophoric MC unit. Hence, the PL sensor responses of the AIE bi-fluorophoric structure toward lead(II) ion could be further amplified via the FRET-OFF processes to turn off red PL emission of the coordinated MC acceptor and to recover blue-green PL emission of the TPE donor. Accordingly, the best LOD value for the AIE sensor detection toward Pb2+ was 0.27 µM. The highest red MC emission with the optimum FRET process of AIE sensor could be utilized in cell viability tests to prove the non-toxic and remarkable bio-marker of AIE sensor to detect lead(II) ion in live cells. The developed FRET-OFF processes with ratiometric PL behavior of the bi-fluorophoric AIE sensor can be utilized for future chemo- and bio-sensor applications.

20.
J Allergy Clin Immunol ; 142(4): 1257-1271.e4, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29391257

RESUMEN

BACKGROUND: A particular characteristic of non-small cell lung cancer is the composition of the tumor microenvironment with a very high proportion of fibroblastic stromal cells (FSCs). OBJECTIVE: Lapses in our basic knowledge of fibroblast phenotype and function in the tumor microenvironment make it difficult to define whether FSC subsets exist that exhibit either tumor-promoting or tumor-suppressive properties. METHODS: We used gene expression profiling of lung versus tumor FSCs from patients with non-small cell lung cancer. Moreover, CCL19-expressing FSCs were studied in transgenic mouse models by using a lung cancer metastasis model. RESULTS: CCL19 mRNA expression in human tumor FSCs correlates with immune cell infiltration and intratumoral accumulation of CD8+ T cells. Mechanistic dissection in murine lung carcinoma models revealed that CCL19-expressing FSCs form perivascular niches to promote accumulation of CD8+ T cells in the tumor. Targeted ablation of CCL19-expressing tumor FSCs reduced immune cell recruitment and resulted in unleashed tumor growth. CONCLUSION: These data suggest that a distinct population of CCL19-producing FSCs fosters the development of an immune-stimulating intratumoral niche for immune cells to control cancer growth.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/inmunología , Quimiocina CCL19/inmunología , Fibroblastos/inmunología , Neoplasias Pulmonares/inmunología , Células del Estroma/inmunología , Animales , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Quimiocina CCL19/genética , Humanos , Neoplasias Pulmonares/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Linfocitos T/trasplante , Transcriptoma , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA