Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Oral Dis ; 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37448179

RESUMEN

OBJECTIVES: Previously, we demonstrated that IL17RB plays an essential role in lung cancer progression. This study aimed to determine whether IL17RB correlates with oral cancer and promotes oral cancer progression. SUBJECTS AND METHODS: IL17RB expression in oral cancer tissues and normal tissues was determined by immunohistochemistry staining, while the association of IL17RB expression with the clinicopathological characteristics of oral squamous cell carcinoma (OSCC) patients was analyzed and its correlation with progression-free survival and response to radiotherapy and chemotherapy in OSCC patients was also explored. Western blotting was performed to investigate the expression of IL17RB in various OSCC cell lines; moreover, transwell assay was performed to evaluate the effect of IL17RB expression on cell migration ability. RESULTS: In this study, we found that IL17RB was expressed higher in OSCC tissues compared to normal oral mucosa tissues and its expression was positively correlated with tumor size, lymph node metastasis, advanced cancer stage, and poor prognosis. In vitro study showed that IL17RB expression in OSCC cell lines as determined by Western blotting, was positively correlated with their migration ability. CONCLUSION: Clinical and in vitro studies suggest that IL17RB might serve as an independent risk factor and a therapeutic target for oral cancer.

2.
Sensors (Basel) ; 22(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36015736

RESUMEN

In this paper, we present a new AI (Artificial Intelligence) edge platform, called "MiniDeep", which provides a standalone deep learning platform based on the cloud-edge architecture. This AI-Edge platform provides developers with a whole deep learning development environment to set up their deep learning life cycle processes, such as model training, model evaluation, model deployment, model inference, ground truth collecting, data pre-processing, and training data management. To the best of our knowledge, such a whole deep learning development environment has not been built before. MiniDeep uses Amazon Web Services (AWS) as the backend platform of a deep learning tuning management model. In the edge device, the OpenVino enables deep learning inference acceleration at the edge. To perform a deep learning life cycle job, MiniDeep proposes a mini deep life cycle (MDLC) system which is composed of several microservices from the cloud to the edge. MiniDeep provides Train Job Creator (TJC) for training dataset management and the models' training schedule and Model Packager (MP) for model package management. All of them are based on several AWS cloud services. On the edge device, MiniDeep provides Inference Handler (IH) to handle deep learning inference by hosting RESTful API (Application Programming Interface) requests/responses from the end device. Data Provider (DP) is responsible for ground truth collection and dataset synchronization for the cloud. With the deep learning ability, this paper uses the MiniDeep platform to implement a recommendation system for AI-QSR (Quick Service Restaurant) KIOSK (interactive kiosk) application. AI-QSR uses the MiniDeep platform to train an LSTM (Long Short-Term Memory)-based recommendation system. The LSTM-based recommendation system converts KIOSK UI (User Interface) flow to the flow sequence and performs sequential recommendations with food suggestions. At the end of this paper, the efficiency of the proposed MiniDeep is verified through real experiments. The experiment results have demonstrated that the proposed LSTM-based scheme performs better than the rule-based scheme in terms of purchase hit accuracy, categorical cross-entropy, precision, recall, and F1 score.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Programas Informáticos
3.
Sensors (Basel) ; 22(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36366107

RESUMEN

Doppler-radar-based continuous human motion recognition recently has attracted extensive attention, which is a favorable choice for privacy and personal security. Existing results of continuous human motion recognition (CHMR) using mmWave FMCW Radar are not considered the continuous human motion with the high similarity problem. In this paper, we proposed a new CHMR algorithm with the consideration of the high similarity (HS) problem, called as CHMR-HS, by using the modified Transformer-based learning model. As far as we know, this is the first result in the literature to investigate the continuous HMR with the high similarity. To obtain the clear FMCW radar images, the background and target signals of the detected human are separated through the background denoising and the target extraction algorithms. To investigate the effects of the spectral-temporal multi-features with different dimensions, Doppler, range, and angle signatures are extracted as the 2D features and range-Doppler-time and range-angle-time signatures are extracted as the 3D features. The 2D/3D features are trained into the adjusted Transformer-encoder model to distinguish the difference of the high-similarity human motions. The conventional Transformer-decoder model is also re-designed to be Transformer-sequential-decoder model such that Transformer-sequential-decoder model can successfully recognize the continuous human motions with the high similarity. The experimental results show that the accuracy of our proposed CHMR-HS scheme are 95.2% and 94.5% if using 3D and 2D features, the simulation results also illustrates that our CHMR-HS scheme has advantages over existing CHMR schemes.


Asunto(s)
Radar , Procesamiento de Señales Asistido por Computador , Humanos , Movimiento (Física) , Algoritmos , Ultrasonografía Doppler
4.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924999

RESUMEN

Pancreatic cancer (PC) is the seventh leading cause of cancer death worldwide, and remains one of our most recalcitrant and dismal diseases. In contrast to many other malignancies, there has not been a significant improvement in patient survival over the past decade. Despite advances in our understanding of the genetic alterations associated with this disease, an incomplete understanding of the underlying biology and lack of suitable animal models have hampered efforts to develop more effective therapies. LKB1 is a tumor suppressor that functions as a primary upstream kinase of adenine monophosphate-activated protein kinase (AMPK), which is an important mediator in the regulation of cell growth and epithelial polarity pathways. LKB1 is mutated in a significant number of Peutz-Jeghers syndrome (PJS) patients and in a small proportion of sporadic cancers, including PC; however, little is known about how LKB1 loss contributes to PC development. Here, we report that a reduction in Wnt/ß-catenin activity is associated with LKB1 tumor-suppressive properties in PC. Remarkably, in vivo functional analyses of ß-catenin in the Pdx-1-Cre LKB1L/L ß-cateninL/L mouse model compared to LKB1 loss-driven cystadenoma demonstrate that the loss of ß-catenin impairs cystadenoma development in the pancreas of Pdx-1Cre LKB1L/L mice and dramatically restores the normal development and functions of the pancreas. This study further determined the in vivo and in vitro therapeutic efficacy of the ß-catenin inhibitor FH535 in suppressing LKB1 loss-driven cystadenoma and reducing PC progression that delineates the potential roles of Wnt/ß-catenin signaling in PC harboring LKB1 deficiency.


Asunto(s)
Cistoadenoma Mucinoso/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Sulfonamidas/farmacología , beta Catenina/antagonistas & inhibidores , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular Tumoral , Cistoadenoma Mucinoso/etiología , Cistoadenoma Mucinoso/prevención & control , Femenino , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/etiología , Neoplasias Pancreáticas/prevención & control , Síndrome de Peutz-Jeghers/genética , Síndrome de Peutz-Jeghers/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/genética
5.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32586050

RESUMEN

Pancreatic cancer (PC) is a highly lethal malignancy due to the cancer routinely being diagnosed late and having a limited response to chemotherapy. Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic malignant tumor, representing more than 85% of all pancreatic cancers. In the present study, we characterized the phenotypes of concomitant P53 and APC mutations in pancreatic neoplasms driven by the oncogene KRAS in genetically modified mice (GEMM). In this GEMM setting, APC haploinsufficiency coupled with P53 deletion and KRASG12D activation resulted in an earlier appearance of pancreatic intraepithelial neoplasia (PanIN) lesions and progressed rapidly to highly invasive and metastatic PDAC. Through a microarray analysis of murine PDAC cells derived from our APC-deficient PDAC model, we observed that APC loss leads to upregulated CD34 expression in PDAC. CD34 is a member of a family of single-pass transmembrane proteins and is selectively expressed in hematopoietic progenitor cells, vascular endothelial cells, interstitial precursor cells, and various interstitial tumor cells. However, the functional roles of CD34 in pancreatic cancer remain unclear. Thus, in this study, we explored the mechanisms regarding how CD34 promotes the deterioration of pancreatic malignancy. Our results demonstrated that the increased expression of CD34 induced by APC inactivation promotes the invasion and migration of PDAC cells, which may relate to PDAC metastasis in vivo. Collectively, our study provides first-line evidence to delineate the association between CD34 and the APC/Wnt pathway in PDAC, and reveals the potential roles of CD34 in PDAC progression.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/fisiología , Antígenos CD34/metabolismo , Carcinoma Ductal Pancreático/secundario , Transición Epitelial-Mesenquimal , Células Madre Neoplásicas/patología , Neoplasias Pancreáticas/patología , Animales , Antígenos CD34/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones SCID , Mutación , Células Madre Neoplásicas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fenotipo , Transducción de Señal
6.
Mol Cancer ; 18(1): 96, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31109321

RESUMEN

BACKGROUND: The TG-interacting factor 1 (TGIF1) gene, which encodes a nuclear transcriptional corepressor of the TGFß1/Smad signaling pathway, has been implicated in the pathogenesis of various types of human cancer; however, its role in pancreatic ductal adenocarcinoma (PDAC) has yet to be elucidated. METHODS: The expression of TGIF1 in human and murine PDAC specimens were detected by IHC analysis. The functions of TGIF1 in in vivo PDAC growth, dissemination, and metastasis were assessed using conditional inactivation of TGIF1 in well-established autochthonous mouse models of PDAC. Primary cells from TGIF1 null or wild type PDAC mice were examined by assays for cell proliferation, migration, invasion, soft agar and xenograft tumorigenesis. Gene expression profiling, pathway analyses, epigenetic changes associated with TGIF1 loss, and in vitro and in vivo effects of 4-MU were assessed. RESULTS: Conditional deletion of TGIF1 in the mouse pancreas had no discernible effect on pancreatic development or physiology. Notably, TGIF1 loss induced KrasG12D-driven PDAC models exhibited shorter latency and greater propensity for distant metastases. Deciphering the molecular mechanisms highlighted the TGIF1 loss-induced activation of the hyaluronan synthase 2 (HAS2)-CD44 signaling pathway and upregulation of the immune checkpoint regulator PD-L1 to facilitate the epithelial-mesenchymal transition (EMT) and tumor immune suppression. We also founded that TGIF1 might function as an epigenetic regulator and response for aberrant EMT gene expression during PDAC progression. CONCLUSIONS: Our results imply that targeting the HAS2 pathway in TGIF1 loss of PDAC could be a promising therapeutic strategy for improving the clinical efficacy against PDAC metastasis.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Perfilación de la Expresión Génica/métodos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Mutación , Metástasis de la Neoplasia , Trasplante de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
7.
Oral Dis ; 25(3): 758-771, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30620118

RESUMEN

BACKGROUND: Oral cancer is a common cancer with a high mortality rate. While surgery is the most effective treatment for oral cancer, it frequently causes deformity and dysfunction in the orofacial region. In this study, methyl aminolevulinate photodynamic therapy (MAL-PDT) as a prevention tool against progression of precancerous lesion to oral cancer was explored. METHODS: For in vitro studies, we evaluated the effects of MAL-PDT on viability of DOK oral precancerous cells by XTT, cell morphology by TEM, and intracellular signaling pathways by flow cytometry, Western blotting, and immunofluorescence. For in vivo study, DMBA was used to induce oral precancerous lesions in hamsters followed by MAL-PDT treatment. We measured tumor size and body weight weekly. After sacrifice, buccal pouch lesions were processed for H&E stain and immunohistochemistry analysis. RESULTS: MAL-PDT induced autophagic cell death in DOK oral precancerous cells. The autophagy-related markers LC3II and p62/SQSTM1 and autophagosome formation in DOK cells were increased after MAL-PDT treatment. In vivo, Metvix® -PDT treatment decreased tumor growth and enhanced LC3II expression in hamster buccal pouch tumors induced by DMBA. CONCLUSIONS: Our in vitro and in vivo results suggest that MAL-PDT may provide an effective therapy for oral precancerous lesions through induction of autophagic cell death.


Asunto(s)
Autofagia/efectos de los fármacos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Fotoquimioterapia , Lesiones Precancerosas/tratamiento farmacológico , Lesiones Precancerosas/patología , 9,10-Dimetil-1,2-benzantraceno , Ácido Aminolevulínico/análogos & derivados , Ácido Aminolevulínico/uso terapéutico , Animales , Autofagosomas , Peso Corporal , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cricetinae , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Lesiones Precancerosas/inducido químicamente , Proteína Sequestosoma-1/metabolismo , Transducción de Señal , Carga Tumoral
8.
Int J Cancer ; 140(8): 1860-1869, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28032649

RESUMEN

Ovarian carcinosarcoma cancer is the most lethal form of gynecological malignancy, but the pathogenesis and biological function for this ovarian cancer remain unknown. We establishment the transgenic mouse model of K-rasG12D p53loxP/loxP and found that K-ras mutation and p53 deletion within the ovarian surface epithelium gave rise to ovarian lesions with a hyperproliferation and endometrioid glandular morphology. Furthermore, double mutant ovaries formed ovarian carcinosarcomas that were high grade and poorly differentiated. Induction was widely metastatic and spread to abdominal organs including liver, spleen, and kidney at 4 wk. We also confirmed the role of K-rasG12D in ovarian cancer cell lines MCAS and PA-1 and showed that K-rasG12D overexpression strongly induced cell proliferation, migration, and invasion. The ovarian cancer model we developed recapitulates the specific tumor histomorphology and the probable mechanism of malignant transformation in endometriosis.


Asunto(s)
Carcinosarcoma/genética , Neoplasias Ováricas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína p53 Supresora de Tumor/genética , Animales , Carcinosarcoma/patología , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Transgénicos , Mutación , Neoplasias Ováricas/patología
9.
J Cell Mol Med ; 20(5): 962-72, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26945908

RESUMEN

Epidemiologic data show the incidence of gastric cancer in men is twofold higher than in women worldwide. Oestrogen is reported to have the capacity against gastric cancer development. Endogenous oestrogen reduces gastric cancer incidence in women. Cancer patients treated with oestrogens have a lower subsequent risk of gastric cancer. Accumulating studies report that bone marrow mesenchymal stem cells (BMMSCs) might contribute to the progression of gastric cancer through paracrine effect of soluble factors. Here, we further explore the effect of oestrogen on BMMSCs-mediated human gastric cancer invasive motility. We founded that HBMMSCs notably secrete interleukin-8 (IL-8) protein. Administration of IL-8 specific neutralizing antibody significantly inhibits HBMMSCs-mediated gastric cancer motility. Treatment of recombinant IL-8 soluble protein confirmed the role of IL-8 in mediating HBMMSCs-up-regulated cell motility. IL-8 up-regulates motility activity through Src signalling pathway in human gastric cancer. We further observed that 17ß -estradiol inhibit HBMMSCS-induced cell motility via suppressing activation of IL8-Src signalling in human gastric cancer cells. 17ß-estradiol inhibits IL8-up-regulated Src downstream target proteins including p-Cas, p-paxillin, p-ERK1/2, p-JNK1/2, MMP9, tPA and uPA. These results suggest that 17ß-estradiol significantly inhibits HBMMSCS-induced invasive motility through suppressing IL8-Src signalling axis in human gastric cancer cells.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Estradiol/farmacología , Regulación Neoplásica de la Expresión Génica , Interleucina-8/genética , Células Madre Mesenquimatosas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Técnicas de Cocultivo , Proteína Sustrato Asociada a CrK/antagonistas & inhibidores , Proteína Sustrato Asociada a CrK/genética , Proteína Sustrato Asociada a CrK/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Mucosa Gástrica/metabolismo , Humanos , Interleucina-8/antagonistas & inhibidores , Interleucina-8/metabolismo , MAP Quinasa Quinasa 4/antagonistas & inhibidores , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Paxillin/antagonistas & inhibidores , Paxillin/genética , Paxillin/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Transducción de Señal , Estómago/patología
10.
Hepatol Res ; 45(7): 782-93, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25179429

RESUMEN

AIM: Hairy/enhancer-of-split related with YRPW motif-like (HEYL) protein was first identified as a transcriptional repressor. It is a downstream gene of the Notch and transforming growth factor-ß pathways. Little is known about its role in the pathogenesis of hepatocellular carcinoma (HCC). METHODS: Eighty surgically resected paired HCC and adjacent non-cancerous tissues were analyzed for HEYL expression by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). HCC cells were transfected with pHEYL-EGFP vector to overexpress the HEYL gene or infected with specific shHEYL lentiviral vector to silence HEYL gene expression. HEYL expressional analysis and functional characterization were assessed by 3-(4 5-dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide assays, flow cytometry, RT-qPCR, western blotting and methylation-specific PCR. RESULTS: We determined that HEYL expression was inactivated in more than 75% of HCC. In addition, overexpression of HEYL in SK-Hep 1 cells caused apoptosis by the cleavage of caspase 3 and poly (ADP-ribose) polymerase. We discovered that HEYL apoptosis was preceded by serine 15 phosphorylation and accumulation of P53. Molecular analysis revealed that HEYL overexpression led to increased p16, p19, p21, p27 and Bad protein expression, and reduced c-Myc, Bcl-2 and Cyclin B1 expression. Epigenetic silencing of HEYL expression by DNA hypermethylation in HCC directly correlated with loss of HEYL expression in HCC. CONCLUSION: HEYL is frequently downregulated by promoter methylation in HCC. HEYL may be a tumor suppressor of liver carcinogenesis through upregulation of P53 gene expression and activation of P53-mediated apoptosis.

11.
Proc Natl Acad Sci U S A ; 109(43): E2939-48, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23019585

RESUMEN

Chemoresistance to platinum therapy is a major obstacle that needs to be overcome in the treatment of ovarian cancer patients. The high rates and patterns of therapeutic failure seen in patients are consistent with a steady accumulation of drug-resistant cancer stem cells (CSCs). This study demonstrates that the Notch signaling pathway and Notch3 in particular are critical for the regulation of CSCs and tumor resistance to platinum. We show that Notch3 overexpression in tumor cells results in expansion of CSCs and increased platinum chemoresistance. In contrast, γ-secretase inhibitor (GSI), a Notch pathway inhibitor, depletes CSCs and increases tumor sensitivity to platinum. Similarly, a Notch3 siRNA knockdown increases the response to platinum therapy, further demonstrating that modulation of tumor chemosensitivity by GSI is Notch specific. Most importantly, the cisplatin/GSI combination is the only treatment that effectively eliminates both CSCs and the bulk of tumor cells, indicating that a dual combination targeting both populations is needed for tumor eradication. In addition, we found that the cisplatin/GSI combination therapy has a synergistic cytotoxic effect in Notch-dependent tumor cells by enhancing the DNA-damage response, G(2)/M cell-cycle arrest, and apoptosis. Based on these results, we conclude that targeting the Notch pathway could significantly increase tumor sensitivity to platinum therapy. Our study suggests important clinical applications for targeting Notch as part of novel treatment strategies upon diagnosis of ovarian cancer and at recurrence. Both platinum-resistant and platinum-sensitive relapses may benefit from such an approach as clinical data suggest that all relapses after platinum therapy are increasingly platinum resistant.


Asunto(s)
Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Células Madre Neoplásicas/patología , Neoplasias Ováricas/patología , Receptores Notch/metabolismo , Animales , Ciclo Celular , Muerte Celular , Daño del ADN , Resistencia a Antineoplásicos , Femenino , Humanos , Ratones , Neoplasias Ováricas/tratamiento farmacológico , Receptor Notch3 , Ensayos Antitumor por Modelo de Xenoinjerto
12.
J Cell Physiol ; 229(2): 191-201, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23881612

RESUMEN

The Reversion-inducing Cysteine-rich Protein with Kazal Motifs (RECK) gene encodes a membrane-anchored glycoprotein that exhibits strong inhibitory activity against various matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase 10 (ADAM10). RECK functions as a tumor suppressor by inhibiting migration, invasion, and angiogenesis. However, whether RECK can modulate the stem-like phenotypes of cancer cells is not known. In this study, we demonstrate that RECK is down-regulated in gastric cancer cells and is further reduced in CD133-positive cancer stem-like cells. Ectopic expression of RECK induces down-regulation of the expression of stemness genes including Sox2, Oct4, and Nanog and the cancer stem cell marker CD133. Treatment of DAPT (a γ-secretase inhibitor) or TAPI-2 (a hydroxamate-based inhibitor of MMPs, tumor necrosis factor α converting enzyme and ADAM17) reduces Notch1 shedding and activation which results in attenuation of stemness genes and CD133. Our data show that ADAM10 and ADAM17 are co-pulled down by RECK suggesting a physical interaction between RECK and ADAMs on cell surface. In addition, RECK suppresses sphere formation and sphere size of CD133-positive gastric cancer cells. Overexpression of Notch intracellular domain (NICD) or ADAM17 effectively reverse the inhibitory effect of RECK in CD133-positive cells. More importantly, RECK reduces tumorigenic activity of CD133-positive cells in vivo. Conversely, knockdown of RECK in non-tumorigenic GI2 cells increases stemness and CD133 expression and sphere forming ability. Collectively, these results indicate that RECK represses stemness gene expression and stem-like properties by inhibiting ADAM-mediated Notch1 shedding and activation.


Asunto(s)
Proteínas ADAM/metabolismo , Proteínas Ligadas a GPI/metabolismo , Receptor Notch1/metabolismo , Proteínas ADAM/genética , Animales , Línea Celular Tumoral , Femenino , Proteínas Ligadas a GPI/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , Neoplasias Experimentales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Notch1/genética , Transducción de Señal , Neoplasias Gástricas
13.
BMC Cancer ; 14: 181, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24625091

RESUMEN

BACKGROUND: SMAD4 is a gastrointestinal malignancy-specific tumor suppressor gene found mutated in one third of colorectal cancer specimens and half of pancreatic tumors. SMAD4 inactivation by allelic deletion or intragenic mutation mainly occurs in the late stage of human pancreatic ductal adenocarcinoma (PDAC). Various studies have proposed potential SMAD4-mediated anti-tumor effects in human malignancy; however, the relevance of SMAD4 in the PDAC molecular phenotype has not yet been fully characterized. METHODS: The AsPC-1, CFPAC-1 and PANC-1 human PDAC cell lines were used. The restoration or knockdown of SMAD4 expression in PDAC cells were confirmed by western blotting, luciferase reporter and immunofluorescence assays. In vitro cell proliferation, xenograft, wound healing, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), Western blotting, and immunohistochemistry analysis were conducted using PDAC cells in which SMAD4 was either overexpressed or knocked down. RESULTS: Here, we report that re-expression of SMAD4 in SMAD4-null PDAC cells does not affect tumor cell growth in vitro or in vivo, but significantly enhances cells migration in vitro. SMAD4 restoration transcriptionally activates the TGF-ß1/Nestin pathway and induces expression of several transcriptional factors. In contrast, SMAD4 loss in PDAC leads to increased expression of E-cadherin, vascular endothelial growth factor (VEGF), epidermal growth factor receptor (EGFR) and CD133. Furthermore, SMAD4 loss causes alterations to multiple kinase pathways (particularly the phosphorylated ERK/p38/Akt pathways), and increases chemoresistance in vitro. Finally, PDAC cells with intact SMAD4 are more sensitive to TGF-ß1 inhibitor treatment to reduced cell migration; PDAC cells lacking SMAD4 showed decreased cell motility in response to EGFR inhibitor treatment. CONCLUSIONS: This study revealed the molecular basis for SMAD4-dependent differences in PDAC with the aim of identifying the subset of patients likely to respond to therapies targeting the TGF-ß or EGFR signaling pathways and of identifying potential therapeutic interventions for PDAC patients with SMAD4 defects.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fenotipo , Proteína Smad4/deficiencia , Animales , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Inhibición de Migración Celular/genética , Movimiento Celular/genética , Proliferación Celular , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Neoplasias Pancreáticas/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Neoplasias Pancreáticas
14.
Int J Mol Sci ; 15(3): 3560-79, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24583847

RESUMEN

VCAM-1 (CD106), a transmembrane glycoprotein, was first reported to play an important role in leukocyte adhesion, leukocyte transendothelial migration and cell activation by binding to integrin VLA-1 (α4ß1). In the present study, we observed that VCAM-1 expression can be induced in many breast cancer epithelial cells by cytokine stimulation in vitro and its up-regulation directly correlated with advanced clinical breast cancer stage. We found that VCAM-1 over-expression in the NMuMG breast epithelial cells controls the epithelial and mesenchymal transition (EMT) program to increase cell motility rates and promote chemoresistance to doxorubicin and cisplatin in vitro. Conversely, in the established MDAMB231 metastatic breast cancer cell line, we confirmed that knockdown of endogenous VCAM-1 expression reduced cell proliferation and inhibited TGFß1 or IL-6 mediated cell migration, and increased chemosensitivity. Furthermore, we demonstrated that knockdown of endogenous VCAM-1 expression in MDAMB231 cells reduced tumor formation in a SCID xenograft mouse model. Signaling studies showed that VCAM-1 physically associates with CD44 and enhances CD44 and ABCG2 expression. Our findings uncover the possible mechanism of VCAM-1 activation facilitating breast cancer progression, and suggest that targeting VCAM-1 is an attractive strategy for therapeutic intervention.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica/genética , Receptores de Hialuranos/genética , Molécula 1 de Adhesión Celular Vascular/genética , Adulto , Animales , Antineoplásicos/farmacología , Western Blotting , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Cisplatino/farmacología , Citocinas/farmacología , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Receptores de Hialuranos/metabolismo , Ratones SCID , Persona de Mediana Edad , Unión Proteica , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trasplante Heterólogo , Carga Tumoral/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
15.
Int J Mol Sci ; 15(8): 13223-35, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25073092

RESUMEN

Major depressive disorder and cardiovascular disease are common serious illnesses worldwide. Selective serotonin reuptake inhibitors and norepinephrine-dopamine reuptake inhibitors may reduce the mortality of cardiovascular disease patients with comorbid depression. Interferon-γ-inducible protein 10 (IP-10), a type 1 T helper cell (Th1)-related chemokine, contributes to manifestations of atherosclerosis during cardiovascular inflammations; however, the pathophysiological mechanisms linking cardiovascular disease and effective antidepressants have remained elusive. We investigated the in vitro effects of six different classes of antidepressants on the IP-10 chemokine expression in lipopolysaccharide (LPS)-stimulated monocytes, and their detailed intracellular mechanisms. The human monocytes were pretreated with antidepressants (10⁻8-10⁻5 M) before LPS-stimulation. IP-10 was measured by enzyme-linked immunosorbent assay (ELISA) and then intracellular signaling was investigated using Western blotting and chromatin immunoprecipitation. Fluoxetine and bupropion suppressed LPS-induced IP-10 expression in monocytes, and they had no cytotoxic effects. Furthermore, fluoxetine inhibited LPS-induced IP-10 expression via the mitogen-activated protein kinase (MAPK)-p38 pathway. Fluoxetine and bupropion could not only treat depression but also reduce Th1-related chemokine IP-10 production in human monocytes. Our results may indicate a possible mechanism related to how particular antidepressants reduce the risk of cardiovascular disease.


Asunto(s)
Antidepresivos/farmacología , Quimiocina CXCL10/análisis , Expresión Génica/efectos de los fármacos , Bupropión/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Inmunoprecipitación de Cromatina , Ensayo de Inmunoadsorción Enzimática , Fluoxetina/farmacología , Humanos , Lipopolisacáridos/toxicidad , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Cancers (Basel) ; 16(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38473403

RESUMEN

Glioblastoma multiforme (GBM) is the most common and deadly type of brain tumor originating from glial cells. Despite decades of clinical trials and research, there has been limited success in improving survival rates. However, molecular pathology studies have provided a detailed understanding of the genetic alterations associated with the formation and progression of glioblastoma-such as Kirsten rat sarcoma viral oncogene homolog (KRAS) signaling activation (5%), P53 mutations (25%), and adenomatous polyposis coli (APC) alterations (2%)-laying the groundwork for further investigation into the biological and biochemical basis of this malignancy. These analyses have been crucial in revealing the sequential appearance of specific genetic lesions at distinct histopathological stages during the development of GBM. To further explore the pathogenesis and progression of glioblastoma, here, we developed the glial-fibrillary-acidic-protein (GFAP)-Cre-driven mouse model and demonstrated that activated KRAS and p53 deficiencies play distinct and cooperative roles in initiating glioma tumorigenesis. Additionally, the combination of APC haploinsufficiency with mutant Kras activation and p53 deletion resulted in the rapid progression of GBM, characterized by perivascular inflammation, large necrotic areas, and multinucleated giant cells. Consequently, our GBM models have proven to be invaluable resources for identifying early disease biomarkers in glioblastoma, as they closely mimic the human disease. The insights gained from these models may pave the way for potential advancements in the diagnosis and treatment of this challenging brain tumor.

17.
Int J Oncol ; 64(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38063232

RESUMEN

RAD51 recombinase is one of the DNA damage repair proteins associated with breast cancer risk. Apart from its function to maintain genomic integrity within the cell nucleus, RAD51 localized to the cytoplasm has also been implicated in breast malignancy. However, limited information exists on the roles of cytoplasmic vs. nuclear RAD51 in breast cancer progression and patient prognosis. In the present study, the association of cytoplasmic and nuclear RAD51 with clinical outcomes of patients with breast cancer was analyzed, revealing that elevated cytoplasmic RAD51 expression was associated with breast cancer progression, including increased cancer stage, grade, tumor size, lymph node metastasis and chemoresistance, along with reduced patient survival. By contrast, elevated nuclear RAD51 expression largely had the inverse effect. Results from in vitro investigations supported the cancer­promoting effect of RAD51, showing that overexpression of RAD51 promoted breast cancer cell growth, chemoresistance and metastatic ability, while knockdown of RAD51 repressed these malignant behaviors. The current data suggest that differential expression of subcellular RAD51 had a distinct impact on breast cancer progression and patient survival. Specifically, cytoplasmic RAD51 in contrast to nuclear RAD51 was potentially an adverse marker in breast cancer.


Asunto(s)
Neoplasias de la Mama , Recombinasa Rad51 , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Citoplasma/metabolismo , Estadificación de Neoplasias , Pronóstico , Recombinasa Rad51/genética
18.
Carcinogenesis ; 34(6): 1315-22, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23385063

RESUMEN

During the process of skin tumor promotion, expression of the cutaneous cancer stem cell (CSC) marker CD34(+) is required for stem cell activation and tumor formation. A previous study has shown that activation of protein kinase D1 (PKD1) is involved in epidermal tumor promotion; however, the signals that regulate CSCs in skin carcinogenesis have not been characterized. This study was designed to investigate the chemopreventive potential of peracetylated (-)-epigallocatechin-3-gallate (AcEGCG) on 7,12-dimethylbenz[a]-anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted skin tumorigenesis in ICR mice and to elucidate the possible mechanisms involved in the inhibitory action of PKD1 on CSCs. We demonstrated that topical application of AcEGCG before TPA treatment can be more effective than EGCG in reducing DMBA/TPA-induced tumor incidence and multiplicity. Notably, AcEGCG not only inhibited the expression of p53, p21, c-Myc, cyclin B, p-CDK1 and Cdc25A but also restored the activation of extracellular signal-regulated kinase 1/2 (ERK1/2), which decreased DMBA/TPA-induced increases in tumor proliferation and mitotic index. To clarify the role of PKD1 in cell proliferation and tumorigenesis, we studied the expression and activation of PKD1 in CD34(+) skin stem cells and skin tumors. We found that PKD1 was strongly expressed in CD34(+) cells and that pretreatment with AcEGCG markedly inhibited PKD1 activation and CD34(+) expression. More importantly, pretreatment with AcEGCG remarkably suppressed nuclear factor-kappaB, cyclic adenosine 3',5'-monophosphate-responsive element-binding protein (CREB) and CCAAT-enhancer-binding protein (C/EBPs) activation by inhibiting the phosphorylation of c-Jun-N-terminal kinase 1/2, p38 and phosphatidylinositol 3-kinase (PI3K)/Akt and by attenuating downstream target gene expression, including inducible nitric oxide synthase, cyclooxygenase-2, ornithine decarboxylase and vascular endothelial growth factor. Moreover, this is the first study to demonstrate that AcEGCG is a CD34(+) and PKD1 inhibitor in the multistage mouse skin carcinogenesis model. Overall, our results powerfully suggest that AcEGCG could be developed into a novel chemopreventive agent and that PKD1 may be a preventive and therapeutic target for skin cancer in clinical settings.


Asunto(s)
Acetatos/farmacología , Antígenos CD34/metabolismo , Catequina/análogos & derivados , Transformación Celular Neoplásica/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Neoplasias Cutáneas/prevención & control , 9,10-Dimetil-1,2-benzantraceno , Animales , Antígenos CD34/biosíntesis , Proteínas Potenciadoras de Unión a CCAAT/antagonistas & inhibidores , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Catequina/farmacología , Proliferación Celular/efectos de los fármacos , Quimioprevención , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ciclooxigenasa 2/biosíntesis , Quinasas MAP Reguladas por Señal Extracelular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Índice Mitótico , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Ornitina Descarboxilasa/biosíntesis , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación/efectos de los fármacos , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Acetato de Tetradecanoilforbol , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
Cancer Cell ; 8(3): 185-95, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16169464

RESUMEN

To determine the role of the phosphatidylinositol 3-kinase (PI3-K) pathway in pancreas development, we generated a pancreas-specific knockout of Pten, a negative regulator of PI3-K signaling. Knockout mice display progressive replacement of the acinar pancreas with highly proliferative ductal structures that contain abundant mucins and express Pdx1 and Hes1, two markers of pancreatic progenitor cells. Moreover, a fraction of these mice develop ductal malignancy. We provide evidence that ductal metaplasia results from the expansion of centroacinar cells rather than transdifferentiation of acinar cells. These results indicate that Pten actively maintains the balance between different cell types in the adult pancreas and that misregulation of the PI3-K pathway in centroacinar cells may contribute to the initiation of pancreatic carcinoma in vivo.


Asunto(s)
Neoplasias Pancreáticas/patología , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Diferenciación Celular , Transformación Celular Neoplásica , Metaplasia/patología , Ratones , Fosfohidrolasa PTEN , Páncreas/patología , Páncreas/fisiopatología , Páncreas/ultraestructura , Neoplasias Pancreáticas/prevención & control
20.
iScience ; 26(1): 105881, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36654862

RESUMEN

ARID1A is a tumor suppressor gene mutated in 7-10% of pancreatic cancer patients. However, its function in pancreas development and endocrine regulation is unclear. We generated mice that lack Arid1a expression in the pancreas. Our results showed that deletion of the Arid1a gene in mice caused a reduction in islet numbers and insulin production, both of which are associated with diabetes mellitus (DM) phenotype. RNA sequencing of isolated islets confirmed DM gene signature and decrease of developmental lineage genes. We identified neurogenin3, a transcription factor that controls endocrine fate specification, is a direct target of Aird1a. Gene set enrichment analysis indicated the enhancement of histone deacetylase (HDAC) pathway after Arid1a depletion and a clinically approved HDAC inhibitor showed therapeutic benefit by suppressing disease onset. Our data suggest that Arid1a is required for the development of pancreatic islets by regulating Ngn3+-mediated transcriptional program and is important in maintaining endocrine function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA