Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 611(7935): 312-319, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36261521

RESUMEN

Infectious diseases are among the strongest selective pressures driving human evolution1,2. This includes the single greatest mortality event in recorded history, the first outbreak of the second pandemic of plague, commonly called the Black Death, which was caused by the bacterium Yersinia pestis3. This pandemic devastated Afro-Eurasia, killing up to 30-50% of the population4. To identify loci that may have been under selection during the Black Death, we characterized genetic variation around immune-related genes from 206 ancient DNA extracts, stemming from two different European populations before, during and after the Black Death. Immune loci are strongly enriched for highly differentiated sites relative to a set of non-immune loci, suggesting positive selection. We identify 245 variants that are highly differentiated within the London dataset, four of which were replicated in an independent cohort from Denmark, and represent the strongest candidates for positive selection. The selected allele for one of these variants, rs2549794, is associated with the production of a full-length (versus truncated) ERAP2 transcript, variation in cytokine response to Y. pestis and increased ability to control intracellular Y. pestis in macrophages. Finally, we show that protective variants overlap with alleles that are today associated with increased susceptibility to autoimmune diseases, providing empirical evidence for the role played by past pandemics in shaping present-day susceptibility to disease.


Asunto(s)
ADN Antiguo , Predisposición Genética a la Enfermedad , Inmunidad , Peste , Selección Genética , Yersinia pestis , Humanos , Aminopeptidasas/genética , Aminopeptidasas/inmunología , Peste/genética , Peste/inmunología , Peste/microbiología , Peste/mortalidad , Yersinia pestis/inmunología , Yersinia pestis/patogenicidad , Selección Genética/inmunología , Europa (Continente)/epidemiología , Europa (Continente)/etnología , Inmunidad/genética , Conjuntos de Datos como Asunto , Londres/epidemiología , Dinamarca/epidemiología
2.
Genome Res ; 31(7): 1136-1149, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34187812

RESUMEN

Approximately 1% of the human genome has the ability to fold into G-quadruplexes (G4s)-noncanonical strand-specific DNA structures forming at G-rich motifs. G4s regulate several key cellular processes (e.g., transcription) and have been hypothesized to participate in others (e.g., firing of replication origins). Moreover, G4s differ in their thermostability, and this may affect their function. Yet, G4s may also hinder replication, transcription, and translation and may increase genome instability and mutation rates. Therefore, depending on their genomic location, thermostability, and functionality, G4 loci might evolve under different selective pressures, which has never been investigated. Here we conducted the first genome-wide analysis of G4 distribution, thermostability, and selection. We found an overrepresentation, high thermostability, and purifying selection for G4s within genic components in which they are expected to be functional-promoters, CpG islands, and 5' and 3' UTRs. A similar pattern was observed for G4s within replication origins, enhancers, eQTLs, and TAD boundary regions, strongly suggesting their functionality. In contrast, G4s on the nontranscribed strand of exons were underrepresented, were unstable, and evolved neutrally. In general, G4s on the nontranscribed strand of genic components had lower density and were less stable than those on the transcribed strand, suggesting that the former are avoided at the RNA level. Across the genome, purifying selection was stronger at stable G4s. Our results suggest that purifying selection preserves the sequences of functional G4s, whereas nonfunctional G4s are too costly to be tolerated in the genome. Thus, G4s are emerging as fundamental, functional genomic elements.

3.
Bioinformatics ; 38(3): 861-863, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34664624

RESUMEN

SUMMARY: The growing availability of genomewide polymorphism data has fueled interest in detecting diverse selective processes affecting population diversity. However, no model-based approaches exist to jointly detect and distinguish the two complementary processes of balancing and positive selection. We extend the BalLeRMix  B-statistic framework described in Cheng and DeGiorgio (2020) for detecting balancing selection and present BalLeRMix+, which implements five B statistic extensions based on mixture models to robustly identify both types of selection. BalLeRMix+ is implemented in Python and computes the composite likelihood ratios and associated model parameters for each genomic test position. AVAILABILITY AND IMPLEMENTATION: BalLeRMix+ is freely available at https://github.com/bioXiaoheng/BallerMixPlus. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Polimorfismo Genético , Programas Informáticos
4.
PLoS Genet ; 16(6): e1008867, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32555579

RESUMEN

Recent research shows that introgression between closely-related species is an important source of adaptive alleles for a wide range of taxa. Typically, detection of adaptive introgression from genomic data relies on comparative analyses that require sequence data from both the recipient and the donor species. However, in many cases, the donor is unknown or the data is not currently available. Here, we introduce a genome-scan method-VolcanoFinder-to detect recent events of adaptive introgression using polymorphism data from the recipient species only. VolcanoFinder detects adaptive introgression sweeps from the pattern of excess intermediate-frequency polymorphism they produce in the flanking region of the genome, a pattern which appears as a volcano-shape in pairwise genetic diversity. Using coalescent theory, we derive analytical predictions for these patterns. Based on these results, we develop a composite-likelihood test to detect signatures of adaptive introgression relative to the genomic background. Simulation results show that VolcanoFinder has high statistical power to detect these signatures, even for older sweeps and for soft sweeps initiated by multiple migrant haplotypes. Finally, we implement VolcanoFinder to detect archaic introgression in European and sub-Saharan African human populations, and uncovered interesting candidates in both populations, such as TSHR in Europeans and TCHH-RPTN in Africans. We discuss their biological implications and provide guidelines for identifying and circumventing artifactual signals during empirical applications of VolcanoFinder.


Asunto(s)
Introgresión Genética , Genética de Población/métodos , Genoma Humano/genética , Modelos Genéticos , Polimorfismo Genético , África del Sur del Sahara , Alelos , Antígenos/genética , Población Negra/genética , Simulación por Computador , Europa (Continente) , Evolución Molecular , Haplotipos , Humanos , Proteínas de Filamentos Intermediarios/genética , Receptores de Tirotropina/genética , Proteínas S100/genética , Selección Genética , Programas Informáticos , Población Blanca/genética
5.
Mol Biol Evol ; 37(11): 3267-3291, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32462188

RESUMEN

Long-term balancing selection typically leaves narrow footprints of increased genetic diversity, and therefore most detection approaches only achieve optimal performances when sufficiently small genomic regions (i.e., windows) are examined. Such methods are sensitive to window sizes and suffer substantial losses in power when windows are large. Here, we employ mixture models to construct a set of five composite likelihood ratio test statistics, which we collectively term B statistics. These statistics are agnostic to window sizes and can operate on diverse forms of input data. Through simulations, we show that they exhibit comparable power to the best-performing current methods, and retain substantially high power regardless of window sizes. They also display considerable robustness to high mutation rates and uneven recombination landscapes, as well as an array of other common confounding scenarios. Moreover, we applied a specific version of the B statistics, termed B2, to a human population-genomic data set and recovered many top candidates from prior studies, including the then-uncharacterized STPG2 and CCDC169-SOHLH2, both of which are related to gamete functions. We further applied B2 on a bonobo population-genomic data set. In addition to the MHC-DQ genes, we uncovered several novel candidate genes, such as KLRD1, involved in viral defense, and SCN9A, associated with pain perception. Finally, we show that our methods can be extended to account for multiallelic balancing selection and integrated the set of statistics into open-source software named BalLeRMix for future applications by the scientific community.


Asunto(s)
Modelos Genéticos , Selección Genética , Animales , Antígenos HLA-D/genética , Humanos , Tasa de Mutación , Pan paniscus/genética
6.
Mol Biol Evol ; 36(1): 177-199, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30380122

RESUMEN

Trans-species polymorphism has been widely used as a key sign of long-term balancing selection across multiple species. However, such sites are often rare in the genome and could result from mutational processes or technical artifacts. Few methods are yet available to specifically detect footprints of trans-species balancing selection without using trans-species polymorphic sites. In this study, we develop summary- and model-based approaches that are each specifically tailored to uncover regions of long-term balancing selection shared by a set of species by using genomic patterns of intraspecific polymorphism and interspecific fixed differences. We demonstrate that our trans-species statistics have substantially higher power than single-species approaches to detect footprints of trans-species balancing selection, and are robust to those that do not affect all tested species. We further apply our model-based methods to human and chimpanzee whole-genome sequencing data. In addition to the previously established major histocompatibility complex and malaria resistance-associated FREM3/GYPE regions, we also find outstanding genomic regions involved in barrier integrity and innate immunity, such as the GRIK1/CLDN17 intergenic region, and the SLC35F1 and ABCA13 genes. Our findings not only echo the significance of pathogen defense but also reveal novel candidates in maintaining balanced polymorphisms across human and chimpanzee lineages. Finally, we show that these trans-species statistics can be applied to and work well for an arbitrary number of species, and integrate them into open-source software packages for ease of use by the scientific community.


Asunto(s)
Técnicas Genéticas , Modelos Genéticos , Polimorfismo Genético , Selección Genética , Animales , Proteínas de la Matriz Extracelular/genética , Frecuencia de los Genes , Humanos , Complejo Mayor de Histocompatibilidad , Tasa de Mutación , Pan troglodytes/genética , Receptores de Ácido Kaínico/genética , Recombinación Genética
7.
Mol Ecol ; 26(24): 6871-6891, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29113018

RESUMEN

There are few methods tailored for detecting signals of positive selection in populations directly ancestral to multiple descendent populations. We introduce the ancestral branch statistic (ABS), a four-population summary statistic for identifying selective sweeps occurring in the direct ancestor of a pair of populations. Simulations show that ABS performs at least as well as, and often better under model violations, than the complementary likelihood approach of 3P-CLR across diverse selection scenarios and parameter values. We first applied ABS to contemporary human genomic data to identify genes that may have been adaptive in ancestral East Asian populations, uncovering the well-established candidate EDAR, as well as a novel candidate SLC35F3, which encodes a putative thiamine transporter that may have been involved in adaptation to eating polished grains. Next, we performed scans with ancient European genomic data to reexamine evidence of recent positive selection in ancestral Europeans. The MCM6/LCT cluster and the SLC45A2 and HERC2 genes are strong outliers, agreeing with previous studies. Novel candidates, such as SLC30A9 and CYP1A2, may have been involved in adaptation to local nutrient sufficiency and lifestyle changes. Finally, we provide open-source software, CalcABS, which can perform genomic scans of ancestral sweeps with ABS from population allele frequency data.


Asunto(s)
Genética de Población , Genoma Humano , Genómica/métodos , Selección Genética , Pueblo Asiatico/genética , Simulación por Computador , Frecuencia de los Genes , Humanos , Funciones de Verosimilitud , Programas Informáticos , Población Blanca/genética
8.
bioRxiv ; 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37905072

RESUMEN

Summary: Whole-genome time-series allele frequency data are becoming more prevalent as ancient DNA (aDNA) sequences and data from evolve-and-resequence (E&R) experiments are generated at a rapid pace. Such data presents unprecedented opportunities to elucidate the dynamics of adaptative genetic variation. However, despite many methods to infer parameters of selection models from allele frequency trajectories available in the literature, few provide user-friendly implementations for large-scale empirical applications. Here, we present diplo-locus, an open-source Python package that provides functionality to simulate and perform inference from time-series under the Wright-Fisher diffusion with general diploid selection. The package includes Python modules as well as command-line tools. Availability: Python package and command-line tool avilable at: https://github.com/steinrue/diplo_locus or https://pypi.org/project/diplo-locus/.

9.
bioRxiv ; 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37066254

RESUMEN

Barton et al.1 raise several statistical concerns regarding our original analyses2 that highlight the challenge of inferring natural selection using ancient genomic data. We show here that these concerns have limited impact on our original conclusions. Specifically, we recover the same signature of enrichment for high FST values at the immune loci relative to putatively neutral sites after switching the allele frequency estimation method to a maximum likelihood approach, filtering to only consider known human variants, and down-sampling our data to the same mean coverage across sites. Furthermore, using permutations, we show that the rs2549794 variant near ERAP2 continues to emerge as the strongest candidate for selection (p = 1.2×10-5), falling below the Bonferroni-corrected significance threshold recommended by Barton et al. Importantly, the evidence for selection on ERAP2 is further supported by functional data demonstrating the impact of the ERAP2 genotype on the immune response to Y. pestis and by epidemiological data from an independent group showing that the putatively selected allele during the Black Death protects against severe respiratory infection in contemporary populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA