Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
BMC Plant Biol ; 24(1): 334, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664603

RESUMEN

BACKGROUND: B-box (BBX) proteins are a type of zinc finger proteins containing one or two B-box domains. They play important roles in development and diverse stress responses of plants, yet their roles in wheat remain unclear. RESULTS: In this study, 96 BBX genes were identified in the wheat genome and classified into five subfamilies. Subcellular localization prediction results showed that 68 TaBBXs were localized in the nucleus. Protein interaction prediction analysis indicated that interaction was one way that these proteins exerted their functions. Promoter analysis indicated that TaBBXs may play important roles in light signal, hormone, and stress responses. qRT-PCR analysis revealed that 14 TaBBXs were highly expressed in seeds compared with other tissues. These were probably involved in seed dormancy and germination, and their expression patterns were investigated during dormancy acquisition and release in the seeds of wheat varieties Jing 411 and Hongmangchun 21, showing significant differences in seed dormancy and germination phenotypes. Subcellular localization analysis confirmed that the three candidates TaBBX2-2 A, TaBBX4-2 A, and TaBBX11-2D were nuclear proteins. Transcriptional self-activation experiments further demonstrated that TaBBX4-2A was transcriptionally active, but TaBBX2-2A and TaBBX11-2D were not. Protein interaction analysis revealed that TaBBX2-2A, TaBBX4-2A, and TaBBX11-2D had no interaction with each other, while TaBBX2-2A and TaBBX11-2D interacted with each other, indicating that TaBBX4-2A may regulate seed dormancy and germination by transcriptional regulation, and TaBBX2-2A and TaBBX11-2D may regulate seed dormancy and germination by forming a homologous complex. CONCLUSIONS: In this study, the wheat BBX gene family was identified and characterized at the genomic level by bioinformatics analysis. These observations provide a theoretical basis for future studies on the functions of BBXs in wheat and other species.


Asunto(s)
Germinación , Familia de Multigenes , Latencia en las Plantas , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/fisiología , Latencia en las Plantas/genética , Germinación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Simulación por Computador , Filogenia
2.
Plant Biotechnol J ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38923790

RESUMEN

Soil salinity has negative impacts on food security and sustainable agriculture. Ion homeostasis, osmotic adjustment and reactive oxygen species scavenging are the main approaches utilized by rice to resist salt stress. Breeding rice cultivars with high salt tolerance (ST) and yield is a significant challenge due to the lack of elite alleles conferring ST. Here, we report that the elite allele LEA12OR, which encodes a late embryogenesis abundant (LEA) protein from the wild rice Oryza rufipogon Griff., improves osmotic adjustment and increases yield under salt stress. Mechanistically, LEA12OR, as the early regulator of the LEA12OR-OsSAPK10-OsbZIP86-OsNCED3 functional module, maintains the kinase stability of OsSAPK10 under salt stress, thereby conferring ST by promoting abscisic acid biosynthesis and accumulation in rice. The superior allele LEA12OR provides a new avenue for improving ST and yield via the application of LEA12OR in current rice through molecular breeding and genome editing.

3.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(6): 553-558, 2024 Jun 15.
Artículo en Zh | MEDLINE | ID: mdl-38926370

RESUMEN

The prevalence of short stature among prepubertal children in China is relatively high. Early identification of the cause and timely intervention can bring greater benefits to children with short stature. This paper provides an overview of early diagnosis, intervention measures, and personalized medication dosage for prepubertal short stature children, aiming to provide references for clinical doctors.


Asunto(s)
Estatura , Diagnóstico Precoz , Humanos , Niño , Trastornos del Crecimiento/diagnóstico , Trastornos del Crecimiento/etiología
6.
Chin J Nat Med ; 22(7): 632-642, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39059832

RESUMEN

Gambogenic acid (GNA), a bioactive compound derived from the resin of Garcinia hanburyi, has demonstrated significant antitumor properties. However, its mechanisms of action in oral squamous cell carcinoma (OSCC) remain largely unclear. This study aimed to elucidate the apoptotic effects of GNA on OSCC cell lines CAL-27 and SCC-15. Our results indicated that GNA induced apoptosis by upregulating the pro-apoptotic protein Noxa. Mechanistic investigations revealed that GNA treatment led to the generation of reactive oxygen species (ROS), which activated endoplasmic reticulum (ER) stress, culminating in cell apoptosis. Inhibition of ROS production and ER stress pathways significantly mitigated GNA-induced Noxa upregulation and subsequent apoptosis. Furthermore, in vivo studies using a murine xenograft model demonstrated that GNA administration effectively inhibited the growth of CAL-27 tumors. Collectively, these findings underscore GNA's potential as a therapeutic agent for the treatment of OSCC.


Asunto(s)
Apoptosis , Carcinoma de Células Escamosas , Estrés del Retículo Endoplásmico , Garcinia , Neoplasias de la Boca , Proteínas Proto-Oncogénicas c-bcl-2 , Especies Reactivas de Oxígeno , Regulación hacia Arriba , Xantenos , Humanos , Apoptosis/efectos de los fármacos , Animales , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/metabolismo , Garcinia/química , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Xantenos/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Ratones , Regulación hacia Arriba/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ratones Desnudos , Ratones Endogámicos BALB C , Masculino
7.
Nat Genet ; 56(7): 1516-1526, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38872029

RESUMEN

Excessive nitrogen promotes the formation of nonproductive tillers in rice, which decreases nitrogen use efficiency (NUE). Developing high-NUE rice cultivars through balancing nitrogen uptake and the formation of productive tillers remains a long-standing challenge, yet how these two processes are coordinated in rice remains elusive. Here we identify the transcription factor OsGATA8 as a key coordinator of nitrogen uptake and tiller formation in rice. OsGATA8 negatively regulates nitrogen uptake by repressing transcription of the ammonium transporter gene OsAMT3.2. Meanwhile, it promotes tiller formation by repressing the transcription of OsTCP19, a negative modulator of tillering. We identify OsGATA8-H as a high-NUE haplotype with enhanced nitrogen uptake and a higher proportion of productive tillers. The geographical distribution of OsGATA8-H and its frequency change in historical accessions suggest its adaption to the fertile soil. Overall, this study provides molecular and evolutionary insights into the regulation of NUE and facilitates the breeding of rice cultivars with higher NUE.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Haplotipos , Nitrógeno , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Nitrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo
8.
Adv Ther ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085749

RESUMEN

INTRODUCTION: Automated bone age assessment (BAA) is of growing interest because of its accuracy and time efficiency in daily practice. In this study, we validated the clinical applicability of a commercially available artificial intelligence (AI)-powered X-ray bone age analyzer equipped with a deep learning-based automated BAA system and compared its performance with that of the Tanner-Whitehouse 3 (TW-3) method. METHODS: Radiographs prospectively collected from 30 centers across various regions in China, including 900 Chinese children and adolescents, were assessed independently by six doctors (three experts and three residents) and an AI analyzer for TW3 radius, ulna, and short bones (RUS) and TW3 carpal bone age. The experts' mean estimates were accepted as the gold standard. The performance of the AI analyzer was compared with that of each resident. RESULTS: For the estimation of TW3-RUS, the AI analyzer had a mean absolute error (MAE) of 0.48 ± 0.42. The percentage of patients with an absolute error of < 1.0 years was 86.78%. The MAE was significantly lower than that of rater 1 (0.54 ± 0.49, P = 0.0068); however, it was not significant for rater 2 (0.48 ± 0.48) or rater 3 (0.49 ± 0.46). For TW3 carpal, the AI analyzer had an MAE of 0.48 ± 0.65. The percentage of patients with an absolute error of < 1.0 years was 88.78%. The MAE was significantly lower than that of rater 2 (0.58 ± 0.67, P = 0.0018) and numerically lower for rater 1 (0.54 ± 0.64) and rater 3 (0.50 ± 0.53). These results were consistent for the subgroups according to sex, and differences between the age groups were observed. CONCLUSION: In this comprehensive validation study conducted in China, an AI-powered X-ray bone age analyzer showed accuracies that matched or exceeded those of doctor raters. This method may improve the efficiency of clinical routines by reducing reading time without compromising accuracy.


Assessing bone age, or how developed a child's skeleton is, is important in medical care, but the standard method can be time-consuming. Using AI to automatically assess bone age from X-ray images may improve efficiency without reducing accuracy. In this study, we evaluated how well an AI-powered X-ray bone age analyzer performed compared to the established Tanner­Whitehouse 3 (TW-3) method. X-ray images from 900 Chinese children and adolescents were collected from 30 centers. Six doctors (three experts, three residents) and the AI system independently assessed the TW-3 radius, ulna, and short bones (RUS) and TW-3 carpal bone age. The experts' assessments were considered the gold standard. The AI analyzer had an average error of 0.48 years for TW3-RUS bone age, with 87% of assessments within 1 year of the experts. For TW3 carpal bone age, the AI had an average error of 0.48 years, with 89% within 1 year. These results were similar to or better than those of the resident raters. These findings show the AI-powered analyzer can assess bone age as accurately as human raters. This technology may improve clinical efficiency by reducing the time required for bone age assessments without compromising accuracy.

9.
Med ; 5(7): 797-815.e2, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38677287

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent in children and adolescents, particularly those with obesity. NAFLD is considered a hepatic manifestation of the metabolic syndrome due to its close associations with abdominal obesity, insulin resistance, and atherogenic dyslipidemia. Experts have proposed an alternative terminology, metabolic dysfunction-associated fatty liver disease (MAFLD), to better reflect its pathophysiology. This study aimed to develop consensus statements and recommendations for pediatric MAFLD through collaboration among international experts. METHODS: A group of 65 experts from 35 countries and six continents, including pediatricians, hepatologists, and endocrinologists, participated in a consensus development process. The process encompassed various aspects of pediatric MAFLD, including epidemiology, mechanisms, screening, and management. FINDINGS: In round 1, we received 65 surveys from 35 countries and analyzed these results, which informed us that 73.3% of respondents agreed with 20 draft statements while 23.8% agreed somewhat. The mean percentage of agreement or somewhat agreement increased to 80.85% and 15.75%, respectively, in round 2. The final statements covered a wide range of topics related to epidemiology, pathophysiology, and strategies for screening and managing pediatric MAFLD. CONCLUSIONS: The consensus statements and recommendations developed by an international expert panel serve to optimize clinical outcomes and improve the quality of life for children and adolescents with MAFLD. These findings emphasize the need for standardized approaches in diagnosing and treating pediatric MAFLD. FUNDING: This work was funded by the National Natural Science Foundation of China (82070588, 82370577), the National Key R&D Program of China (2023YFA1800801), National High Level Hospital Clinical Research Funding (2022-PUMCH-C-014), the Wuxi Taihu Talent Plan (DJTD202106), and the Medical Key Discipline Program of Wuxi Health Commission (ZDXK2021007).


Asunto(s)
Consenso , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/terapia , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Niño , Adolescente , Síndrome Metabólico/epidemiología , Síndrome Metabólico/diagnóstico , Síndrome Metabólico/terapia , Síndrome Metabólico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA