RESUMEN
SARS-CoV-2 is associated with broad tissue tropism, a characteristic often determined by the availability of entry receptors on host cells. Here, we show that TMEM106B, a lysosomal transmembrane protein, can serve as an alternative receptor for SARS-CoV-2 entry into angiotensin-converting enzyme 2 (ACE2)-negative cells. Spike substitution E484D increased TMEM106B binding, thereby enhancing TMEM106B-mediated entry. TMEM106B-specific monoclonal antibodies blocked SARS-CoV-2 infection, demonstrating a role of TMEM106B in viral entry. Using X-ray crystallography, cryogenic electron microscopy (cryo-EM), and hydrogen-deuterium exchange mass spectrometry (HDX-MS), we show that the luminal domain (LD) of TMEM106B engages the receptor-binding motif of SARS-CoV-2 spike. Finally, we show that TMEM106B promotes spike-mediated syncytium formation, suggesting a role of TMEM106B in viral fusion. Together, our findings identify an ACE2-independent SARS-CoV-2 infection mechanism that involves cooperative interactions with the receptors heparan sulfate and TMEM106B.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Receptores Virales/metabolismo , Internalización del Virus , Unión Proteica , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismoRESUMEN
Interaction of the SARS-CoV-2 Spike receptor binding domain (RBD) with the receptor ACE2 on host cells is essential for viral entry. RBD is the dominant target for neutralizing antibodies, and several neutralizing epitopes on RBD have been molecularly characterized. Analysis of circulating SARS-CoV-2 variants has revealed mutations arising in the RBD, N-terminal domain (NTD) and S2 subunits of Spike. To understand how these mutations affect Spike antigenicity, we isolated and characterized >100 monoclonal antibodies targeting epitopes on RBD, NTD, and S2 from SARS-CoV-2-infected individuals. Approximately 45% showed neutralizing activity, of which â¼20% were NTD specific. NTD-specific antibodies formed two distinct groups: the first was highly potent against infectious virus, whereas the second was less potent and displayed glycan-dependant neutralization activity. Mutations present in B.1.1.7 Spike frequently conferred neutralization resistance to NTD-specific antibodies. This work demonstrates that neutralizing antibodies targeting subdominant epitopes should be considered when investigating antigenic drift in emerging variants.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Epítopos/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Monoclonales/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , COVID-19/diagnóstico , Reacciones Cruzadas/inmunología , Epítopos/química , Epítopos/genética , Humanos , Modelos Moleculares , Mutación , Pruebas de Neutralización , Unión Proteica/inmunología , Conformación Proteica , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Relación Estructura-ActividadRESUMEN
ATG9A and ATG2A are essential core members of the autophagy machinery. ATG9A is a lipid scramblase that allows equilibration of lipids across a membrane bilayer, whereas ATG2A facilitates lipid flow between tethered membranes. Although both have been functionally linked during the formation of autophagosomes, the molecular details and consequences of their interaction remain unclear. By combining data from peptide arrays, crosslinking, and hydrogen-deuterium exchange mass spectrometry together with cryoelectron microscopy, we propose a molecular model of the ATG9A-2A complex. Using this integrative structure modeling approach, we identify several interfaces mediating ATG9A-2A interaction that would allow a direct transfer of lipids from ATG2A into the lipid-binding perpendicular branch of ATG9A. Mutational analyses combined with functional activity assays demonstrate their importance for autophagy, thereby shedding light on this protein complex at the heart of autophagy.
Asunto(s)
Autofagosomas , Autofagia , Microscopía por Crioelectrón , Bioensayo , LípidosRESUMEN
Maintenance of epigenetic integrity relies on coordinated recycling and partitioning of parental histones and deposition of newly synthesized histones during DNA replication. This process depends upon a poorly characterized network of histone chaperones, remodelers, and binding proteins. Here we implicate the POLE3-POLE4 subcomplex of the leading-strand polymerase, Polε, in replication-coupled nucleosome assembly through its ability to selectively bind to histones H3-H4. Using hydrogen/deuterium exchange mass spectrometry and physical mapping, we define minimal domains necessary for interaction between POLE3-POLE4 and histones H3-H4. Biochemical analyses establish that POLE3-POLE4 is a histone chaperone that promotes tetrasome formation and DNA supercoiling in vitro. In cells, POLE3-POLE4 binds both newly synthesized and parental histones, and its depletion hinders helicase unwinding and chromatin PCNA unloading and compromises coordinated parental histone retention and new histone deposition. Collectively, our study reveals that POLE3-POLE4 possesses intrinsic H3-H4 chaperone activity, which facilitates faithful nucleosome dynamics at the replication fork.
Asunto(s)
ADN Polimerasa III/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética/genética , Histonas/biosíntesis , Nucleoproteínas/genética , Cromatina/genética , ADN Polimerasa II/química , ADN Polimerasa II/genética , ADN Polimerasa III/química , Proteínas de Unión al ADN/química , Chaperonas de Histonas/química , Chaperonas de Histonas/genética , Histonas/genética , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Nucleoproteínas/química , Nucleosomas/química , Nucleosomas/genética , Proteínas de Unión a Poli-ADP-Ribosa/química , Proteínas de Unión a Poli-ADP-Ribosa/genética , Antígeno Nuclear de Célula en Proliferación/genética , Unión ProteicaRESUMEN
The target for humoral immunity, SARS-CoV-2 spike glycoprotein, has become the focus of vaccine research and development. Previous work demonstrated that the N-terminal domain (NTD) of SARS-CoV-2 spike binds biliverdin-a product of heme catabolism-causing a strong allosteric effect on the activity of a subset of neutralizing antibodies. Herein, we show that the spike glycoprotein is also able to bind heme (KD = 0.5 ± 0.2 µM). Molecular modeling indicated that the heme group fits well within the same pocket on the SARS-CoV-2 spike NTD. Lined by aromatic and hydrophobic residues (W104, V126, I129, F192, F194, I203, and L226), the pocket provides a suitable environment to stabilize the hydrophobic heme. Mutagenesis of N121 has a substantive effect on heme binding (KD = 3000 ± 220 µM), confirming the pocket as a major heme binding location of the viral glycoprotein. Coupled oxidation experiments in the presence of ascorbate indicated that the SARS-CoV-2 glycoprotein can catalyze the slow conversion of heme to biliverdin. The heme trapping and oxidation activities of the spike may allow the virus to reduce levels of free heme during infection to facilitate evasion of the adaptive and innate immunity.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Anticuerpos Antivirales , Biliverdina , Receptores Virales/metabolismo , Anticuerpos NeutralizantesRESUMEN
Integration into host target DNA (tDNA), a hallmark of retroviral replication, is mediated by the intasome, a multimer of integrase (IN) assembled on viral DNA (vDNA) ends. To ascertain aspects of tDNA recognition during integration, we have solved the 3.5 Å resolution cryo-EM structure of the mouse mammary tumor virus (MMTV) strand transfer complex (STC) intasome. The tDNA adopts an A-like conformation in the region encompassing the sites of vDNA joining, which exposes the sugar-phosphate backbone for IN-mediated strand transfer. Examination of existing retroviral STC structures revealed conservation of A-form tDNA in the analogous regions of these complexes. Furthermore, analyses of sequence preferences in genomic integration sites selectively targeted by six different retroviruses highlighted consistent propensity for A-philic sequences at the sites of vDNA joining. Our structure additionally revealed several novel MMTV IN-DNA interactions, as well as contacts seen in prior STC structures, including conserved Pro125 and Tyr149 residues interacting with tDNA. In infected cells, Pro125 substitutions impacted the global pattern of MMTV integration without significantly altering local base sequence preferences at vDNA insertion sites. Collectively, these data advance our understanding of retroviral intasome structure and function, as well as factors that influence patterns of vDNA integration in genomic DNA.
Asunto(s)
Integrasas , Integración Viral , Animales , Ratones , Integrasas/metabolismo , Retroviridae/genética , Retroviridae/metabolismo , ADN Viral/genética , ADN Viral/química , Conformación Molecular , Virus del Tumor Mamario del Ratón/genética , Virus del Tumor Mamario del Ratón/metabolismoRESUMEN
HIV-1 integrase-LEDGF allosteric inhibitors (INLAIs) share the binding site on the viral protein with the host factor LEDGF/p75. These small molecules act as molecular glues promoting hyper-multimerization of HIV-1 IN protein to severely perturb maturation of viral particles. Herein, we describe a new series of INLAIs based on a benzene scaffold that display antiviral activity in the single digit nanomolar range. Akin to other compounds of this class, the INLAIs predominantly inhibit the late stages of HIV-1 replication. A series of high-resolution crystal structures revealed how these small molecules engage the catalytic core and the C-terminal domains of HIV-1 IN. No antagonism was observed between our lead INLAI compound BDM-2 and a panel of 16 clinical antiretrovirals. Moreover, we show that compounds retained high antiviral activity against HIV-1 variants resistant to IN strand transfer inhibitors and other classes of antiretroviral drugs. The virologic profile of BDM-2 and the recently completed single ascending dose phase I trial (ClinicalTrials.gov identifier: NCT03634085) warrant further clinical investigation for use in combination with other antiretroviral drugs. Moreover, our results suggest routes for further improvement of this emerging drug class.
Asunto(s)
Infecciones por VIH , Inhibidores de Integrasa VIH , Integrasa de VIH , Humanos , Replicación Viral , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/uso terapéutico , Antivirales/farmacología , Integrasa de VIH/metabolismo , Infecciones por VIH/tratamiento farmacológico , Regulación AlostéricaRESUMEN
Vaccines are proving to be highly effective in controlling hospitalisation and deaths associated with SARS-CoV-2 infection but the emergence of viral variants with novel antigenic profiles threatens to diminish their efficacy. Assessment of the ability of sera from vaccine recipients to neutralise SARS-CoV-2 variants will inform the success of strategies for minimising COVID19 cases and the design of effective antigenic formulations. Here, we examine the sensitivity of variants of concern (VOCs) representative of the B.1.617.1 and B.1.617.2 (first associated with infections in India) and B.1.351 (first associated with infection in South Africa) lineages of SARS-CoV-2 to neutralisation by sera from individuals vaccinated with the BNT162b2 (Pfizer/BioNTech) and ChAdOx1 (Oxford/AstraZeneca) vaccines. Across all vaccinated individuals, the spike glycoproteins from B.1.617.1 and B.1.617.2 conferred reductions in neutralisation of 4.31 and 5.11-fold respectively. The reduction seen with the B.1.617.2 lineage approached that conferred by the glycoprotein from B.1.351 (South African) variant (6.29-fold reduction) that is known to be associated with reduced vaccine efficacy. Neutralising antibody titres elicited by vaccination with two doses of BNT162b2 were significantly higher than those elicited by vaccination with two doses of ChAdOx1. Fold decreases in the magnitude of neutralisation titre following two doses of BNT162b2, conferred reductions in titre of 7.77, 11.30 and 9.56-fold respectively to B.1.617.1, B.1.617.2 and B.1.351 pseudoviruses, the reduction in neutralisation of the delta variant B.1.617.2 surpassing that of B.1.351. Fold changes in those vaccinated with two doses of ChAdOx1 were 0.69, 4.01 and 1.48 respectively. The accumulation of mutations in these VOCs, and others, demonstrate the quantifiable risk of antigenic drift and subsequent reduction in vaccine efficacy. Accordingly, booster vaccines based on updated variants are likely to be required over time to prevent productive infection. This study also suggests that two dose regimes of vaccine are required for maximal BNT162b2 and ChAdOx1-induced immunity.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162 , COVID-19 , Inmunización Secundaria , SARS-CoV-2/inmunología , Eficacia de las Vacunas , Deriva y Cambio Antigénico/inmunología , Vacuna BNT162/administración & dosificación , Vacuna BNT162/inmunología , COVID-19/inmunología , COVID-19/mortalidad , COVID-19/prevención & control , Células HEK293 , HumanosRESUMEN
Retroviral integrase catalyses the integration of viral DNA into host target DNA, which is an essential step in the life cycle of all retroviruses. Previous structural characterization of integrase-viral DNA complexes, or intasomes, from the spumavirus prototype foamy virus revealed a functional integrase tetramer, and it is generally believed that intasomes derived from other retroviral genera use tetrameric integrase. However, the intasomes of orthoretroviruses, which include all known pathogenic species, have not been characterized structurally. Here, using single-particle cryo-electron microscopy and X-ray crystallography, we determine an unexpected octameric integrase architecture for the intasome of the betaretrovirus mouse mammary tumour virus. The structure is composed of two core integrase dimers, which interact with the viral DNA ends and structurally mimic the integrase tetramer of prototype foamy virus, and two flanking integrase dimers that engage the core structure via their integrase carboxy-terminal domains. Contrary to the belief that tetrameric integrase components are sufficient to catalyse integration, the flanking integrase dimers were necessary for mouse mammary tumour virus integrase activity. The integrase octamer solves a conundrum for betaretroviruses as well as alpharetroviruses by providing critical carboxy-terminal domains to the intasome core that cannot be provided in cis because of evolutionarily restrictive catalytic core domain-carboxy-terminal domain linker regions. The octameric architecture of the intasome of mouse mammary tumour virus provides new insight into the structural basis of retroviral DNA integration.
Asunto(s)
Microscopía por Crioelectrón , ADN Viral/metabolismo , ADN Viral/ultraestructura , Integrasas/química , Integrasas/ultraestructura , Virus del Tumor Mamario del Ratón/enzimología , Multimerización de Proteína , Dominio Catalítico , Cristalografía por Rayos X , ADN Viral/química , Integrasas/metabolismo , Virus del Tumor Mamario del Ratón/química , Virus del Tumor Mamario del Ratón/genética , Virus del Tumor Mamario del Ratón/ultraestructura , Modelos Moleculares , Estructura Cuaternaria de Proteína , Spumavirus/química , Spumavirus/enzimología , Integración ViralRESUMEN
Identifying drivers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure and quantifying population immunity is crucial to prepare for future epidemics. We performed a serial cross-sectional serosurvey throughout the first pandemic wave among patients from the largest health board in Scotland. Screening of 7480 patient serum samples showed a weekly seroprevalence ranging from 0.10% to 8.23% in primary and 0.21% to 17.44% in secondary care, respectively. Neutralization assays showed that highly neutralizing antibodies developed in about half of individuals who tested positive with enzyme-linked immunosorbent assay, mainly among secondary care patients. We estimated the individual probability of SARS-CoV-2 exposure and quantified associated risk factors. We show that secondary care patients, male patients, and 45-64-year-olds exhibit a higher probability of being seropositive. The identification of risk factors and the differences in virus neutralization activity between patient populations provided insights into the patterns of virus exposure during the first pandemic wave and shed light on what to expect in future waves.
Asunto(s)
COVID-19/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , COVID-19/epidemiología , Línea Celular , Estudios Transversales , Atención a la Salud , Demografía , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunidad , Masculino , Persona de Mediana Edad , Pandemias , Factores de Riesgo , Escocia/epidemiología , Estudios Seroepidemiológicos , Adulto JovenRESUMEN
OBJECTIVES: Critical care workers were considered to be at high risk of severe acute respiratory syndrome coronavirus-2 infection from patients during the first wave of the pandemic. Staff symptoms, previous swab testing, and antibody prevalence were correlated with patient admissions to investigate this assumption. DESIGN: Cross-sectional study. SETTING: A large critical care department in a tertiary-care teaching hospital in London, United Kingdom. SUBJECTS: Staff working in critical care. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Participants completed a questionnaire and provided a serum sample for severe acute respiratory syndrome coronavirus-2 antibody testing over a 3-day period in April 2020. We compared the timing of symptoms in staff to the coronavirus disease 2019 patient admissions to critical care. We also identified factors associated with antibody detection. Of 625 staff 384 (61.4%) reported previous symptoms and 124 (19.8%) had sent a swab for testing. Severe acute respiratory syndrome coronavirus-2 infection had been confirmed in 37 of those swabbed (29.8%). Overall, 21% (131/625) had detectable severe acute respiratory syndrome coronavirus-2 antibody, of whom 9.9% (13/131) had been asymptomatic. The peak onset of symptoms among staff occurred 2 weeks before the peak in coronavirus disease 2019 patient admissions. Staff who worked in multiple departments across the hospital were more likely to be seropositive. Staff with a symptomatic household contact were also more likely to be seropositive at 31.3%, compared with 16.2% in those without (p < 0.0001). CONCLUSIONS: Staff who developed coronavirus disease 2019 were less likely to have caught it from their patients in critical care. Other staff, other areas of the hospital, and the wider community are more likely sources of infection. These findings indicate that personal protective equipment was effective at preventing transmission from patients. However, staff also need to maintain protective measures away from the bedside.
Asunto(s)
Prueba Serológica para COVID-19 , COVID-19/diagnóstico , Cuidados Críticos , Personal de Salud/estadística & datos numéricos , Personal de Hospital/estadística & datos numéricos , Adulto , COVID-19/transmisión , Estudios Transversales , Femenino , Humanos , Londres/epidemiología , Masculino , Persona de Mediana Edad , Admisión del Paciente , SARS-CoV-2/patogenicidad , Centros de Atención Terciaria , Reino Unido/epidemiologíaRESUMEN
Retroviral integration is catalysed by a tetramer of integrase (IN) assembled on viral DNA ends in a stable complex, known as the intasome. How the intasome interfaces with chromosomal DNA, which exists in the form of nucleosomal arrays, is currently unknown. Here we show that the prototype foamy virus (PFV) intasome is proficient at stable capture of nucleosomes as targets for integration. Single-particle cryo-electron microscopy reveals a multivalent intasome-nucleosome interface involving both gyres of nucleosomal DNA and one H2A-H2B heterodimer. While the histone octamer remains intact, the DNA is lifted from the surface of the H2A-H2B heterodimer to allow integration at strongly preferred superhelix location ±3.5 positions. Amino acid substitutions disrupting these contacts impinge on the ability of the intasome to engage nucleosomes in vitro and redistribute viral integration sites on the genomic scale. Our findings elucidate the molecular basis for nucleosome capture by the viral DNA recombination machinery and the underlying nucleosome plasticity that allows integration.
Asunto(s)
Nucleosomas/química , Nucleosomas/virología , Spumavirus/metabolismo , Integración Viral , Sustitución de Aminoácidos , Sitios de Unión/genética , Microscopía por Crioelectrón , ADN/genética , ADN/metabolismo , ADN/ultraestructura , Genoma/genética , Histonas/química , Histonas/metabolismo , Histonas/ultraestructura , Integrasas/metabolismo , Modelos Moleculares , Nucleosomas/genética , Nucleosomas/ultraestructura , Multimerización de Proteína , Recombinación Genética , Spumavirus/química , Spumavirus/genética , Spumavirus/ultraestructuraRESUMEN
Cleavage factor I mammalian (CFIm) complex, composed of cleavage and polyadenylation specificity factor 5 (CPSF5) and serine/arginine-like protein CPSF6, regulates alternative polyadenylation (APA). Loss of CFIm function results in proximal polyadenylation site usage, shortening mRNA 3' untranslated regions (UTRs). Although CPSF6 plays additional roles in human disease, its nuclear translocation mechanism remains unresolved. Two ß-karyopherins, transportin (TNPO) 1 and TNPO3, can bind CPSF6 in vitro, and we demonstrate here that while the TNPO1 binding site is dispensable for CPSF6 nuclear import, the arginine/serine (RS)-like domain (RSLD) that mediates TNPO3 binding is critical. The crystal structure of the RSLD-TNPO3 complex revealed potential CPSF6 interaction residues, which were confirmed to mediate TNPO3 binding and CPSF6 nuclear import. Both binding and nuclear import were independent of RSLD phosphorylation, though a hyperphosphorylated mimetic mutant failed to bind TNPO3 and mislocalized to the cell cytoplasm. Although hypophosphorylated CPSF6 largely supported normal polyadenylation site usage, a significant number of mRNAs harbored unnaturally extended 3' UTRs, similar to what is observed when other APA regulators, such as CFIIm component proteins, are depleted. Our results clarify the mechanism of CPSF6 nuclear import and highlight differential roles for RSLD phosphorylation in nuclear translocation versus regulation of APA.
Asunto(s)
Poliadenilación/genética , Conformación Proteica , Proteínas de Unión al ARN/química , beta Carioferinas/química , Transporte Activo de Núcleo Celular/genética , Cristalografía por Rayos X , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Humanos , Fosforilación/genética , Unión Proteica/genética , Proteínas Serina-Treonina Quinasas/química , Proteínas Tirosina Quinasas/química , ARN Mensajero , Proteínas de Unión al ARN/genética , beta Carioferinas/genética , Factores de Escisión y Poliadenilación de ARNm/química , Factores de Escisión y Poliadenilación de ARNm/genéticaRESUMEN
BACKGROUND: Accurate antibody tests are essential to monitor the SARS-CoV-2 pandemic. Lateral flow immunoassays (LFIAs) can deliver testing at scale. However, reported performance varies, and sensitivity analyses have generally been conducted on serum from hospitalised patients. For use in community testing, evaluation of finger-prick self-tests, in non-hospitalised individuals, is required. METHODS: Sensitivity analysis was conducted on 276 non-hospitalised participants. All had tested positive for SARS-CoV-2 by reverse transcription PCR and were ≥21 days from symptom onset. In phase I, we evaluated five LFIAs in clinic (with finger prick) and laboratory (with blood and sera) in comparison to (1) PCR-confirmed infection and (2) presence of SARS-CoV-2 antibodies on two 'in-house' ELISAs. Specificity analysis was performed on 500 prepandemic sera. In phase II, six additional LFIAs were assessed with serum. FINDINGS: 95% (95% CI 92.2% to 97.3%) of the infected cohort had detectable antibodies on at least one ELISA. LFIA sensitivity was variable, but significantly inferior to ELISA in 8 out of 11 assessed. Of LFIAs assessed in both clinic and laboratory, finger-prick self-test sensitivity varied from 21% to 92% versus PCR-confirmed cases and from 22% to 96% versus composite ELISA positives. Concordance between finger-prick and serum testing was at best moderate (kappa 0.56) and, at worst, slight (kappa 0.13). All LFIAs had high specificity (97.2%-99.8%). INTERPRETATION: LFIA sensitivity and sample concordance is variable, highlighting the importance of evaluations in setting of intended use. This rigorous approach to LFIA evaluation identified a test with high specificity (98.6% (95%CI 97.1% to 99.4%)), moderate sensitivity (84.4% with finger prick (95% CI 70.5% to 93.5%)) and moderate concordance, suitable for seroprevalence surveys.
Asunto(s)
Anticuerpos Antivirales/análisis , COVID-19/diagnóstico , Inmunoensayo/métodos , Pandemias , SARS-CoV-2/inmunología , Adulto , COVID-19/epidemiología , COVID-19/virología , ADN Viral/análisis , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Estudios Retrospectivos , SARS-CoV-2/genética , Estudios SeroepidemiológicosRESUMEN
The interactions between a retrovirus and host cell chromatin that underlie integration and provirus expression are poorly understood. The prototype foamy virus (PFV) structural protein GAG associates with chromosomes via a chromatin-binding sequence (CBS) located within its C-terminal region. Here, we show that the PFV CBS is essential and sufficient for a direct interaction with nucleosomes and present a crystal structure of the CBS bound to a mononucleosome. The CBS interacts with the histone octamer, engaging the H2A-H2B acidic patch in a manner similar to other acidic patch-binding proteins such as herpesvirus latency-associated nuclear antigen (LANA). Substitutions of the invariant arginine anchor residue in GAG result in global redistribution of PFV and macaque simian foamy virus (SFVmac) integration sites toward centromeres, dampening the resulting proviral expression without affecting the overall efficiency of integration. Our findings underscore the importance of retroviral structural proteins for integration site selection and the avoidance of genomic junkyards.
Asunto(s)
Histonas/metabolismo , Nucleosomas/metabolismo , Spumavirus/fisiología , Integración ViralRESUMEN
Unlike for other retroviruses, only a few host cell factors that aid the replication of foamy viruses (FVs) via interaction with viral structural components are known. Using a yeast-two-hybrid (Y2H) screen with prototype FV (PFV) Gag protein as bait we identified human polo-like kinase 2 (hPLK2), a member of cell cycle regulatory kinases, as a new interactor of PFV capsids. Further Y2H studies confirmed interaction of PFV Gag with several PLKs of both human and rat origin. A consensus Ser-Thr/Ser-Pro (S-T/S-P) motif in Gag, which is conserved among primate FVs and phosphorylated in PFV virions, was essential for recognition by PLKs. In the case of rat PLK2, functional kinase and polo-box domains were required for interaction with PFV Gag. Fluorescently-tagged PFV Gag, through its chromatin tethering function, selectively relocalized ectopically expressed eGFP-tagged PLK proteins to mitotic chromosomes in a Gag STP motif-dependent manner, confirming a specific and dominant nature of the Gag-PLK interaction in mammalian cells. The functional relevance of the Gag-PLK interaction was examined in the context of replication-competent FVs and single-round PFV vectors. Although STP motif mutated viruses displayed wild type (wt) particle release, RNA packaging and intra-particle reverse transcription, their replication capacity was decreased 3-fold in single-cycle infections, and up to 20-fold in spreading infections over an extended time period. Strikingly similar defects were observed when cells infected with single-round wt Gag PFV vectors were treated with a pan PLK inhibitor. Analysis of entry kinetics of the mutant viruses indicated a post-fusion defect resulting in delayed and reduced integration, which was accompanied with an enhanced preference to integrate into heterochromatin. We conclude that interaction between PFV Gag and cellular PLK proteins is important for early replication steps of PFV within host cells.
Asunto(s)
Cápside/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Infecciones por Retroviridae/metabolismo , Spumavirus/metabolismo , Integración Viral/fisiología , Secuencias de Aminoácidos , Animales , Productos del Gen gag/genética , Productos del Gen gag/metabolismo , Células HeLa , Humanos , Ratones , Fosforilación/genética , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/genética , Ratas , Infecciones por Retroviridae/genética , Spumavirus/genéticaRESUMEN
[This corrects the article DOI: 10.1371/journal.ppat.1005860.].
RESUMEN
The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3'-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications.
Asunto(s)
ADN Viral/genética , VIH-1/genética , Integración Viral , Reparación del ADN , Diseño de Fármacos , Integrasa de VIH/química , Inhibidores de Integrasa VIH , VIH-1/enzimología , Conformación ProteicaRESUMEN
At the end of cell division, cytokinesis splits the cytoplasm of nascent daughter cells and partitions segregated sister genomes. To coordinate cell division with chromosome segregation, the mitotic spindle controls cytokinetic events at the cell envelope. The spindle midzone stimulates the actomyosin-driven contraction of the cleavage furrow, which proceeds until the formation of a microtubule-rich intercellular bridge with the midbody at its centre. The midbody directs the final membrane abscission reaction and has been proposed to attach the cleavage furrow to the intercellular bridge. How the mitotic spindle is connected to the plasma membrane during cytokinesis is not understood. Here we identify a plasma membrane tethering activity in the centralspindlin protein complex, a conserved component of the spindle midzone and midbody. We demonstrate that the C1 domain of the centralspindlin subunit MgcRacGAP associates with the plasma membrane by interacting with polyanionic phosphoinositide lipids. Using X-ray crystallography we determine the structure of this atypical C1 domain. Mutations in the hydrophobic cap and in basic residues of the C1 domain of MgcRacGAP prevent association of the protein with the plasma membrane, and abrogate cytokinesis in human and chicken cells. Artificial membrane tethering of centralspindlin restores cell division in the absence of the C1 domain of MgcRacGAP. Although C1 domain function is dispensable for the formation of the midzone and midbody, it promotes contractility and is required for the attachment of the plasma membrane to the midbody, a long-postulated function of this organelle. Our analysis suggests that centralspindlin links the mitotic spindle to the plasma membrane to secure the final cut during cytokinesis in animal cells.